Publications

2018
Xinyu Chen, Jiajun Lv, Michael B. McElroy, Xingning Han, Chris Nielsen, and Jinyu Wen. 2018. “Power system capacity expansion under higher penetration of renewables considering flexibility constraints and low carbon policies.” IEEE Transactions on Power Systems, 33, 6, Pp. 6240-6253. Publisher's VersionAbstract
Deploying high penetration of variable renewables represents a critical pathway for deep decarbonizing the power sector. The conflict between their temporal variability and limited system flexibility has been largely ignored currently at planning stage. Here we present a novel capacity expansion model optimizing investment decisions and full-year, hourly power balances simultaneously, with considerations of storage technologies and policy constraints, such as carbon tax and renewable portfolio standards (RPS). Based on a computational efficient modeling formulation, all flexibility constrains (ramping, reserve, minimum output, minimal online/offline time) for the 8760-hour duration are incorporated. The proposed model is applied to the northwestern grid of China to examine the optimal composition and distribution of power investments with a wide range of renewable targets. Results indicate that the cost can increase moderately towards 45% of RPS, when properly designing the generation portfolio: prioritizing wind investments, distributing renewable investments more evenly and deploying more flexible mid-size coal and gas units. Reaching higher penetrations of renewables is expensive and the reductions of storage costs are critically important for an affordable low-carbon future. RPS or carbon taxes to reach a same target of emission reduction in China will result in similar overall costs but different generation mixes.
Meng Gao, Yihui Ding, Shaojie Song, Xiao Lu, Xinyu Chen, and Michael B. McElroy. 2018. “Secular decrease of wind power potential in India associated with warming Indian Ocean.” Science Advances, 4, 12. Publisher's VersionAbstract
The Indian government has set an ambitious target for future renewable power generation, including 60 GW of cumulative wind power capacity by 2022. However, the benefits of these substantial investments are vulnerable to the changing climate. On the basis of hourly wind data from an assimilated meteorology reanalysis dataset covering the 1980–2016 period, we show that wind power potential may have declined secularly over this interval, particularly in western India. Surface temperature data confirm that significant warming occurred in the Indian Ocean over the study period, leading to modulation of high pressure over the ocean. A multivariable linear regression model incorporating the pressure gradient between the Indian Ocean and the Indian subcontinent can account for the interannual variability of wind power. A series of numerical sensitivity experiments confirm that warming in the Indian Ocean contributes to subsidence and dampening of upward motion over the Indian continent, resulting potentially in weakening of the monsoonal circulation and wind speeds over India.
Science Advances paper.pdf
Bo Zhang, Shihui Guan, Xiaofang Wu, and Xueli Zhao. 2018. “Tracing natural resource uses via China's supply chains.” Journal of Cleaner Production, 196, Pp. 880-888. Publisher's VersionAbstract
This paper makes an in-depth analysis on demand-driven natural resource requirements in China via the methods of thermodynamic input-output analysis and structural path analysis, in order to reveal the connections between the country's rapid economic development and its intensive use of natural resources. The main natural resources investigated include crops, forestry, rangeland, aquatic products, coal, crude oil & natural gas, ferrous metal ores, nonferrous metal ores, nonmetallic minerals and other primary energy, and exergy is adopted as a common metric for the resource accounting. In 2012, the total domestic resource exergy input into Chinese economic system amounted to 130.1 EJ, of which 44.6% was induced by investment demands. The embodied resource use (ERU) in China's exports was equivalent to over one fifth of its domestic resource supply. The two integrative sectors of Manufacturing and Construction accounted for 44.1% and 28.7% of the national total ERU, respectively. We identified critical supply chain paths starting from resource extraction to final demand, as well as key industrial sectors in driving the extraction, transmission and final use of embodied resources. The top 50 paths were responsible for 30.4 EJ of the ERU. The identification of resource supply chains from a systemic perspective is of great importance when resource and environmental policies are to be applied to concrete industrial sectors and other economic agents. Integrated approaches that take account of consumption-based resource indicators should be developed for resource conservation and cleaner production, particularly for the economic system with a complex supply network.
Chenghe Guan. 2018. “Urban form and digitalization of urban design.” Urban Planning International, 33, 1, Pp. 22-27. Publisher's VersionAbstract
In the mid-18 Century, John Snow utilized spatial data analysis to trace the source of a cholera outbreak in London. His methods established the fundamental theory of using urban morphological study to solve practical urban issues. Accompanied by rapid innovation, technological improvement, and increasing computational power, urban morphology has been widely applied to digitalization of urban design. Through the urban form elements proposed by Kevin Lynch, this paper introduces the development of urban morphology in relation to digitalization of urban design in education, design practice and academic research. This paper adopts a variety of international case studies and discusses the importance of urban form and digitalization of urban design at a global scale.
2017
Changyi Liu, Yang Wang, and Rong Zhu. 2017. “Assessment of the economic potential of China's onshore wind electricity.” Resources, Conservation and Recycling, 121, Pp. 33-39. Publisher's VersionAbstract

The assessment of the economic potential of wind electricity is of critical importance for wind power development in China. Based on the wind resource data between 1995 and 2014 and geological assumptions, this paper calculates economic potential of China’s onshore wind electricity. Furthermore, it builds an econometric model to update the net-present-value model, based on a survey sample of various wind farms. Results show that the economic potential of China’s onshore wind electricity is 8.13 PWh per year with a feed-in-tariff price at 0.60 yuan (about 9.6 U.S. cents) per kilowatt-hour.

Archana Dayalu. 2017. “Exploring the wide net of human energy systems: From carbon dioxide emissions in China to hydraulic fracturing chemicals usage in the United States.” Ph.D. diss. Harvard University Department of Earth and Planetary Sciences.
Xi Lu and Michael B. McElroy. 2017. “Global potential for wind generated electricity.” In Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines, edited by Trevor M. Letcher. Amsterdam: Elsevier. Publisher's VersionAbstract

Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines is the most advanced, up-to-date and research-focused text on all aspects of wind energy engineering. Wind energy is pivotal in global electricity generation and for achieving future essential energy demands and targets. In this fast moving field this must-have edition starts with an in-depth look at the present state of wind integration and distribution worldwide, and continues with a high-level assessment of the advances in turbine technology and how the investment, planning, and economic infrastructure can support those innovations.

Each chapter includes a research overview with a detailed analysis and new case studies looking at how recent research developments can be applied. Written by some of the most forward-thinking professionals in the field and giving a complete examination of one of the most promising and efficient sources of renewable energy, this book is an invaluable reference into this cross-disciplinary field for engineers.

Chenghe Guan and Peter Rowe. 2017. “In pursuit of a well-balanced network of cities and towns: A case study of the Changjiang Delta Region.” Environment and Planning B: Urban Analytics and City Science, 48, 3, Pp. 1-19. Publisher's VersionAbstract
Development of urban networks of cities and towns has received attention including discussions of tensions between population concentrations and overlaps with environmentally sensitive and disaster-prone areas. Moreover, certain development in broad regions of China, such as its deltas, has become a subject of debate. Contrary to some assumptions, this development within places like the Changjiang Delta (also known as the Yangtze River Delta) has proceeded in a relatively incremental manner. However, at this juncture, controlled development of larger cities, like Shanghai, has shifted to more conventional urbanization pathways forward involving larger city expansions. Nevertheless, further urban growth management appears to depend on development and maintenance of a well-balanced network of large, medium, and small-scaled cities and towns. An important aspect of this development involves definition of the Changjiang Delta region itself, and in particular, alongside its likely further economic performance. To these ends, a scenario-based Cellular Automata model of spatial distribution is deployed, reflecting separate thematic projections. A baseline for economic performance is developed, incorporating measures of fixed-asset investment in urban service, revenue from urban maintenance, and Gross Domestic Product. Revelation of a well-performing network involves spatial distribution of development at various scales, and in various concentrations within the region, moreover, location of this development, largely perpendicular to well-travelled corridors, appears as a preferable outcome, contrary to earlier depictions along the major transportation corridors.
Xinyu Chen, Michael B. McElroy, and Chongqing Kang. 2017. “Integrated energy systems for higher wind penetration in China: Formulation, implementation, and impacts.” IEEE Transactions on Power Systems, 33, 2, Pp. 1309-1319. Publisher's VersionAbstract
With the largest installed capacity in the world, wind power in China is experiencing a ∼20% curtailment. The inflexible combined heat and power (CHP) has been recognized as the major barrier for integrating the wind source. The approach to reconcile the conflict between inflexible CHP units and variable wind power in Chinese energy system is yet un-clear. This paper explores the technical and economic feasibility of deploying the heat storage tanks and electric boilers under typical power grids and practical operational regulations. A mixed integer linear optimization model is proposed to simulate an integrated power and heating energy systems, including a CHP model capable of accounting for the commitment decisions and non-convex energy generation constraints. The model is applied to simulate a regional energy system (Jing-Jin-Tang) covering 100-million population, with hourly resolution over a year, incorporating actual data and operational regulations. The results project an accelerating increase in wind curtailment rate at elevated wind penetration. Investment for wind breaks-even at 14% wind penetration. At such penetration, the electric boiler (with heat storage) is effective in reducing wind curtailment. The investment in electric boilers is justified on a social economic basis, but the revenues for different stakeholders are not distributed evenly.
Haikun Wang, Yanxu Zhang, Xi Lu, Weimo Zhu, Chris P. Nielsen, Jun Bi, and Michael B. McElroy. 2017. “Trade‐driven relocation of air pollution and health impacts in China.” Nature Communications, 8, 738. Publisher's VersionAbstract
Recent studies show that international trade affects global distributions of air pollution andpublic health. Domestic interprovincial trade has similar effects within countries, but has notbeen comprehensively investigated previously. Here we link four models to evaluate theeffects of both international exports and interprovincial trade on PM2.5pollution and publichealth across China. We show that 50–60% of China’s air pollutant emissions in 2007 wereassociated with goods and services consumed outside of the provinces where they wereproduced. Of an estimated 1.10 million premature deaths caused by PM2.5pollutionthroughout China, nearly 19% (208,500 deaths) are attributable to international exports. Incontrast, interprovincial trade leads to improved air quality in developed coastal provinceswith a net effect of 78,500 avoided deaths nationwide. However, both international exportand interprovincial trade exacerbate the health burdens of air pollution in China’s lessdeveloped interior provinces. Our results reveal trade to be a critical but largely overlookedconsideration in effective regional air quality planning for China.
Nan Zhong, Jing Cao, and Yuzhu Wang. 2017. “Traffic congestion, ambient air pollution and health: Evidence from driving restrictions in Beijing.” Journal of the Association of Environmental and Resource Economists, 4, 3, Pp. 821–856. Publisher's VersionAbstract

Vehicles have recently overtaken coal to become the largest source of air pollution in urban China. Research on mobile sources of pollution has foundered due both to inaccessibility of Chinese data on health outcomes and strong identifying assumptions. To address these, we collect daily ambulance call data from the Beijing Emergency Medical Center and combine them with an idiosyncratic feature of a driving restriction policy in Beijing that references the last digit of vehicles’ license plate numbers. Because the number 4 is considered unlucky by many in China, it tends to be avoided on license plates. As a result, days on which the policy restricts license plates ending in 4 unintentionally allow more vehicles in Beijing. Leveraging this variation, we find that traffic congestion is indeed 22% higher on days banning 4 and that 24-hour average concentration of NO2 is 12% higher. Correspondingly, these short term increases in pollution increase ambulance calls by 12% and 3% for fever and heart related symptoms, while no effects are found for injuries. These findings suggest that traffic congestion has substantial health externalities in China but that they are also responsive to policy. 

Michael B. McElroy and Xinyu Chen. 2017. “Wind and solar power in the United States: Status and prospects.” CSEE Journal of Power and Energy Systems, 3, 1. Publisher's VersionAbstract

 

The United States has committed to reduce its greenhouse gas emissions by 26%–28% by 2025 and by 83% by 2050 relative to 2005. Meeting these objectives will require major investments in renewable energy options, particularly wind and solar. These investments are promoted at the federal level by a variety of tax credits, and at the state level by requirements for utilities to include specific fractions of renewable energy in their portfolios (Renewable Portfolio Standards) and by opportunities for rooftop PV systems to transfer excess power to utilities through net metering, allowing meters to operate in reverse. The paper discusses the current status of these incentives.

 

Peter Sherman, Xinyu Chen, and Michael B. McElroy. 2017. “Wind-generated electricity in China: Decreasing potential, inter-annual variability, and association with climate change.” Scientific Reports, 7. Publisher's VersionAbstract
China hosts the world’s largest market for wind-generated electricity. The financial return and carbon reduction benefits from wind power are sensitive to changing wind resources. Wind data derived from an assimilated meteorological database are used here to estimate what the wind generated electricity in China would have been on an hourly basis over the period 1979 to 2015 at a geographical resolution of approximately 50 km × 50 km. The analysis indicates a secular decrease in generating potential over this interval, with the largest declines observed for western Inner Mongolia (15 ± 7%) and the northern part of Gansu (17 ± 8%), two leading wind investment areas. The decrease is associated with long-term warming in the vicinity of the Siberian High (SH), correlated also with the observed secular increase in global average surface temperatures. The long-term trend is modulated by variability relating to the Pacific Decadal Oscillation (PDO) and the Arctic Oscillation (AO). A linear regression model incorporating indices for the PDO and AO, as well as the declining trend, can account for the interannual variability of wind power, suggesting that advances in long-term forecasting could be exploited to markedly improve management of future energy systems.
Science_Reports_Full_Text
2016
Yinmin Xia, Yu Zhao, and Chris P. Nielsen. 2016. “Benefits of China's efforts in gaseous pollutant control indicated by bottom-up emissions and satellite observations 2000-2014.” Atmospheric Environment, 136, July, Pp. 43-53. Publisher's VersionAbstract

To evaluate the effectiveness of national air pollution control policies, the emissions of SO2, NOX, CO and CO2 in China are estimated using bottom-up methods for the most recent 15-year period (2000–2014). Vertical column densities (VCDs) from satellite observations are used to test the temporal and spatial patterns of emissions and to explore the ambient levels of gaseous pollutants across the country. The inter-annual trends in emissions and VCDs match well except for SO2. Such comparison is improved with an optimistic assumption in emission estimation that the emission standards for given industrial sources issued after 2010 have been fully enforced. Underestimation of emission abatement and enhanced atmospheric oxidization likely contribute to the discrepancy between SO2 emissions and VCDs. As suggested by VCDs and emissions estimated under the assumption of full implementation of emission standards, the control of SO2 in the 12th Five-Year Plan period (12th FYP, 2011–2015) is estimated to be more effective than that in the 11th FYP period (2006–2010), attributed to improved use of flue gas desulfurization in the power sector and implementation of new emission standards in key industrial sources. The opposite was true for CO, as energy efficiency improved more significantly from 2005 to 2010 due to closures of small industrial plants. Iron & steel production is estimated to have had particularly strong influence on temporal and spatial patterns of CO. In contrast to fast growth before 2011 driven by increased coal consumption and limited controls, NOX emissions decreased from 2011 to 2014 due to the penetration of selective catalytic/non-catalytic reduction systems in the power sector. This led to reduced NO2 VCDs, particularly in relatively highly polluted areas such as the eastern China and Pearl River Delta regions. In developed areas, transportation is playing an increasingly important role in air pollution, as suggested by the increased ratio of NO2 to SO2 VCDs. For air quality in mega cities, the inter-annual trends in emissions and VCDs indicate that surrounding areas are more influential in NO2 level for Beijing than those for Shanghai.

Challenges faced by China compared with the US in developing wind power
Xi Lu, Michael B. McElroy, Wei Peng, Shiyang Liu, Chris P. Nielsen, and Haikun Wang. 2016. “Challenges faced by China compared with the US in developing wind power.” Nature Energy, 1, 6. Publisher's VersionAbstract

In the 21st Conference of the Parties to the UNFCCC held in Paris in December 2015, China pledged to peak its carbon emissions and increase non-fossil energy to 20% by 2030 or earlier. Expanding renewable capacity, especially wind power, is a central strategy to achieve these climate goals. Despite greater capacity for wind installation in China compared to the US (145.1 versus 75.0 GW), less wind electricity is generated in China (186.3 versus 190.9 TWh). Here, we quantify the relative importance of the key factors accounting for the unsatisfactory performance of Chinese wind farms. Different from the results in earlier qualitative studies, we find that the difference in wind resources explains only a small fraction of the present China-US difference in wind power output (17.9% in 2012); the curtailment of wind power, differences in turbine quality, and delayed connection to the grid are identified as the three primary factors (respectively 49.3%, 50.2%, and 50.3% in 2012). Improvements in both technology choices and the policy environment are critical in addressing these challenges. 

Final Manuscript in DASH
Lu et al. is the cover article of this issue of Nature Energy. It is also subject of a "News and Views" commentary in the same issue, by Joanna I. Lewis.

Energy and Climate: Vision for the Future
Michael B. McElroy. 2016. Energy and Climate: Vision for the Future. 1st ed. New York: Oxford University Press. Publisher's VersionAbstract

The climate of our planet is changing at a rate unprecedented in recent human history. The energy absorbed from the sun exceeds what is returned to space. The planet as a whole is gaining energy. The heat content of the ocean is increasing; the surface and atmosphere are warming; mid-latitude glaciers are melting; sea level is rising. The Arctic Ocean is losing its ice cover. None of these assertions are based on theory but on hard scientific fact. Given the science-heavy nature of climate change, debates and discussions have not played as big a role in the public sphere as they should, and instead are relegated to often misinformed political discussions and inaccessible scientific conferences. Michael B. McElroy, an eminent Harvard scholar of environmental studies, combines both his research chops and pedagogical expertise to present a book that will appeal to the lay reader but still be grounded in scientific fact. 

In Energy and Climate: Vision for the Future, McElroy provides a broad and comprehensive introduction to the issue of energy and climate change intended to be accessible for the general reader. The book includes chapters on energy basics, a discussion of the contemporary energy systems of the US and China, and two chapters that engage the debate regarding climate change. The perspective is global but with a specific focus on the US and China recognizing the critical role these countries must play in addressing the challenge of global climate change. The book concludes with a discussion of initiatives now underway to at least reduce the rate of increase of greenhouse gas emissions, together with a vision for a low carbon energy future that could in principle minimize the long-term impact of energy systems on global climate.

Michael B. McElroy. 2016. Energy and Climate: Vision for the Future.. 1st ed. New York: Oxford University Press. Publisher's Version
Qing Yang, Yingquan Chen, Haiping Yang, and Hanping Chen. 2016. “Greenhouse gas emissions of a biomass-based pyrolysis plant in China.” Renewable and Sustainable Energy Reviews, 53, January, Pp. 1580-1590. Publisher's VersionAbstract

Biomass pyrolysis offers an alternative to industrial coal-fired boilers and utilizes low temperature and long residence time to produce syngas, bio-oil and biochar. Construction of biomass-based pyrolysis plants has recently been on the rise in rural China necessitating research into the greenhouse gas emission levels produced as a result. Greenhouse gas emission intensity of a typical biomass fixed-bed pyrolysis plant in China is calculated as 1.55E−02 kg CO2-eq/MJ. Carbon cycle of the whole process was investigated and found that if 41.02% of the biochar returns to the field, net greenhouse gas emission is zero indicating the whole carbon cycle may be renewable. A biomass pyrolysis scenario analysis was also conducted to assess exhaust production, transportation distance and the electricity-generation structure for background information applied in the formulation of national policy.

Jing Cao, Mun S. Ho, and Huifang Liang. 2016. “Household energy demand in urban China: Accounting for regional prices and rapid economic change.” The Energy Journal, 37. Publisher's VersionAbstract

Understanding the rapidly rising demand for energy in China is essential to efforts to reduce the country's energy use and environmental damage. In response to rising incomes and changing prices and demographics, household use of various fuels, electricity and gasoline has changed dramatically in China. In this paper, we estimate both income and price elasticities for various energy types using Chinese urban household micro-data collected by National bureau of Statistics, by applying a two-stage budgeting AIDS model. We find that total energy is price and income inelastic for all income groups after accounting for demographic and regional effects. Our estimated electricity price elasticity ranges from - 0.49 to -0.57, gas price elasticity ranges from -0.46 to -0.94, and gasoline price elasticity ranges from -0.85 to -0.94. Income elasticity for various energy types range from 0.57 to 0.94. Demand for coal is most price and income elastic among the poor, whereas gasoline demand is elastic for the rich.

Rong Xie, Clive E. Sabel, Xi Lu, Weimo Zhu, Haidong Kan, Chris P. Nielsen, and Haikun Wang. 2016. “Long-term trend and spatial pattern of PM2.5-induced premature mortality in China.” Environment International, 97, Pp. 180-186. Publisher's VersionAbstract

With rapid economic growth, China has witnessed increasingly frequent and severe haze and smog episodes over the past decade, posing serious health impacts to the Chinese population, especially those in densely populated city clusters. Quantification of the spatial and temporal variation of health impacts attributable to ambient fine particulate matter (PM2.5) has important implications for China's policies on air pollution control. In this study, we evaluated the spatial distribution of premature deaths in China between 2000 and 2010 attributable to ambient PM2.5 in accord with the Global Burden of Disease based on a high resolution population density map of China, satellite retrieved PM2.5 concentrations, and provincial health data. Our results suggest that China's anthropogenic ambient PM2.5 led to 1,255,400 premature deaths in 2010, 42% higher than the level in 2000. Besides increased PM2.5 concentration, rapid urbanization has attracted large population migration into the more developed eastern coastal urban areas, intensifying the overall health impact. In addition, our analysis implies that health burdens were exacerbated in some developing inner provinces with high population density (e.g. Henan, Anhui, Sichuan) because of the relocation of more polluting and resource-intensive industries into these regions. In order to avoid such national level environmental inequities, China's regulations on PM2.5 should not be loosened in inner provinces. Furthermore policies should create incentive mechanisms that can promote transfer of advanced production and emissions control technologies from the coastal regions to the interior regions.

Pages