Atmospheric Emissions

Chris P Nielsen and Mun S Ho. 2007. “Summary for research.” In Clearing the air: The health and economic damages of air pollution in China, edited by Mun S Ho and Chris P Nielsen. Cambridge, MA: MIT Press. Publisher's VersionAbstract

An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.

China's historic economic expansion is driven by fossil fuels, which increase its emissions of both local air pollutants and greenhouse gases dramatically. Clearing the Air is an innovative, quantitative examination of the national damage caused by China's degraded air quality, conducted in a pathbreaking, interdisciplinary U.S.-China collaboration. Its damage estimates are allocated by sector, making it possible for the first time to judge whether, for instance, power generation, transportation, or an unexpected source such as cement production causes the greatest environmental harm. Such objective analyses can reset policy priorities.

Clearing the Air uses this information to show how appropriate "green" taxes might not only reduce emissions and health damages but even enhance China's economic growth. It also shows to what extent these same policies could limit greenhouse gases, suggesting that wealthier nations have a responsibility to help China build environmental protection into its growth.

Clearing the Air is written for diverse readers, providing a bridge from underlying research to policy implications, with easily accessible overviews of issues and summaries of the findings for nonspecialists and policymakers followed by more specialized, interlinked studies of primary interest to scholars. Taken together, these analyses offer a uniquely integrated assessment that supports the book's economic and policy recommendations.

S.X. Wang, B. Zhao, S.Y. Cai, Z. Klimont, C.P. Nielsen, T. Morikawa, J.H. Woo, Y. Kim, X. Fu, J.Y. Xu, J.M. Hao, and K.B. He. 2014. “Emission trends and mitigation options for air pollutants in East Asia.” Atmospheric Chemistry and Physics, 14, Pp. 6571-6603. Publisher's VersionAbstract

Emissions of air pollutants in East Asia play an important role in the regional and global atmospheric environment. In this study we evaluated the recent emission trends of sulfur dioxide (SO2), nitrogen oxides (NOx), particulate matter (PM), and non-methane volatile organic compounds (NMVOC) in East Asia, and projected their future emissions up until 2030 with six emission scenarios. The results will provide future emission projections for the modeling community of the model inter-comparison program for Asia (MICS-Asia). During 2005–2010, the emissions of SO2 and PM2.5 in East Asia decreased by 15 and 12%, respectively, mainly attributable to the large-scale deployment of flue gas desulfurization (FGD) at China's power plants, and the promotion of highly efficient PM removal technologies in China's power plants and cement industry. During this period, the emissions of NOx and NMVOC increased by 25 and 15%, driven by rapid increase in the emissions from China due to inadequate control strategies. In contrast, the NOx and NMVOC emissions in East Asia except China decreased by 13–17%, mainly due to the implementation of stringent vehicle emission standards in Japan and South Korea. Under current regulations and current levels of implementation, NOx, SO2, and NMVOC emissions in East Asia are projected to increase by about one-quarter over 2010 levels by 2030, while PM2.5 emissions are expected to decrease by 7%. Assuming enforcement of new energy-saving policies, emissions of NOx, SO2, PM2.5 and NMVOC in East Asia are expected to decrease by 28, 36, 28, and 15%, respectively, compared with the baseline case. The implementation of "progressive" end-of-pipe control measures would lead to another one-third reduction of the baseline emissions of NOx, and about one-quarter reduction of SO2, PM2.5, and NMVOC. Assuming the full application of technically feasible energy-saving policies and end-of-pipe control technologies, the emissions of NOx, SO2, and PM2.5 in East Asia would account for only about one-quarter, and NMVOC for one-third, of the levels of the baseline projection. Compared with previous projections, this study projects larger reductions in NOx and SO2 emissions by considering aggressive governmental plans and standards scheduled to be implemented in the next decade, and quantifies the significant effects of detailed progressive control measures on NMVOC emissions up until 2030.

Qing Yang, Yingquan Chen, Haiping Yang, and Hanping Chen. 2016. “Greenhouse gas emissions of a biomass-based pyrolysis plant in China.” Renewable and Sustainable Energy Reviews, 53, January, Pp. 1580-1590. Publisher's VersionAbstract

Biomass pyrolysis offers an alternative to industrial coal-fired boilers and utilizes low temperature and long residence time to produce syngas, bio-oil and biochar. Construction of biomass-based pyrolysis plants has recently been on the rise in rural China necessitating research into the greenhouse gas emission levels produced as a result. Greenhouse gas emission intensity of a typical biomass fixed-bed pyrolysis plant in China is calculated as 1.55E−02 kg CO2-eq/MJ. Carbon cycle of the whole process was investigated and found that if 41.02% of the biochar returns to the field, net greenhouse gas emission is zero indicating the whole carbon cycle may be renewable. A biomass pyrolysis scenario analysis was also conducted to assess exhaust production, transportation distance and the electricity-generation structure for background information applied in the formulation of national policy.

Yu Zhao, Chris P Nielsen, Michael B. McElroy, Lin Zhang, and Jie Zhang. 2012. “CO emissions in China: Uncertainties and implications of improved energy efficiency and emission control.” Atmospheric Environment, 49, Pp. 103-113. Publisher's VersionAbstract
A bottom-up methodology and an improved database of emission factors combining the latest domestic field measurements are developed to estimate the emissions of anthropogenic CO from China at national and provincial levels. The CO emission factors for major economic sectors declined to varying degrees from 2005 to 2009, attributed to improved energy efficiency and/or emission control regulations. Total national CO emissions are estimated at 173 Tg for 2005 and have been relatively stable for subsequent years, despite fast growth of energy consumption and industrial production. While industry and transportation sources dominated CO emissions in developed eastern and north-central China, residential combustion played a much greater role in the less developed western provinces. The uncertainties of national Chinese CO emissions are quantified using Monte Carlo simulation at −20% to +45% (95% confidence interval). Due to poor understanding of emission factors and activity levels for combustion of solid fuels, the largest uncertainties are found for emissions from the residential sector. The trends of bottom-up emissions compare reasonably to satellite observation of CO columns and to ground observations of CO2–CO correlation slopes. The increase in the ratio for emissions of CO2 relative to CO suggests that China has successfully improved combustion efficiencies across its economy in recent years, consistent with national policies to improve energy efficiency and to control criteria air pollutants.
Karen Fisher-Vanden. 2003. “The effects of market reforms on structural change: Implications for energy use and carbon emissions in China.” Energy Journal, 24, 3, Pp. 27-62. Publisher's VersionAbstract
This paper assesses the role played by market reforms in shaping the future level and composition of production, energy use, and carbon emissions in China. Arguments have been made that reducing distortions in China's economy through market reforms will lead to energy efficiency improvements and lower carbon emissions in China. However, these arguments are based on partial and not general equilibrium analyses, and therefore overlook the effects of market reforms on economic growth and structural change. The results suggest that further implementation of market reforms could result in a structural shift to less carbon-intensive production and thus lower carbon emissions per unit GDP. However, this fall in carbon intensity is not enough to compensate for the greater use of energy as a result of market reforms due to higher economic growth and changes in the composition of production. Therefore, China's transition to a market economy could result in significantly higher economic growth, energy use, and carbon emissions. These results could have implications for other countries considering or undergoing market transition.
Yu Zhao, Hui Zhong, Jie Zhang, and Chris P Nielsen. 2015. “Evaluating the effects of China's pollution control on inter-annual trends and uncertainties of atmospheric mercury emissions.” Atmospheric Chemistry and Physics, 15, Pp. 4317–4337. Publisher's VersionAbstract
China's atmospheric mercury (Hg) emissions of anthropogenic origin have been effectively restrained through the national policy of air pollution control. Improved methods based on available field measurements are developed to quantify the benefits of Hg abatement through various emission control measures. Those measures include increased use of flue gas desulfurization (FGD) and selective catalyst reduction (SCR) systems for power sector, precalciners with fabric filter (FF) for cement production, machinery coking with electrostatic precipitator (ESP) for iron and steel production, and advanced manufacturing technologies for nonferrous metal smelting. Declining trends in emissions factors for those sources are revealed, leading to a much slower growth of national total Hg emissions than that of energy and economy, from 679 in 2005 to 750 metric tons (t) in 2012. In particular, nearly half of emissions from the above-mentioned four types of sources are expected to be reduced in 2012, attributed to expansion of technologies with high energy efficiencies and air pollutant removal rates after 2005. The speciation of Hg emissions keeps stable for recent years, with the mass fractions of around 55, 39 and 6% for Hg0, Hg2+ and Hgp, respectively. The lower estimate of Hg emissions than previous inventories is supported by limited chemistry simulation work, but middle-to-long term observation on ambient Hg levels is further needed to justify the inter-annual trends of estimated Hg emissions. With improved implementation of emission controls and energy saving, 23% reduction in annual Hg emissions for the most optimistic case in 2030 is expected compared to 2012, with total emissions below 600 t. While Hg emissions are evaluated to be gradually constrained, increased uncertainties are quantified with Monte-Carlo simulation for recent years, particularly for power and certain industrial sources. The uncertainty of Hg emissions from coal-fired power plants, as an example, increased from −48 ~ +73% in 2005 to −50 ~ +89% in 2012 (expressed as 95% confidence interval). This is attributed mainly to swiftly increased penetration of advanced manufacturing and pollutant control technologies. The unclear operation status or relatively small sample size of field measurements on those technologies results in lower but highly varied emission factors. To further confirm the benefits of pollution control polices with reduced uncertainty, therefore, systematic investigations are recommended specific for Hg pollution sources, and the variability of temporal trends and spatial distributions of Hg emissions need to be better tracked for the country under dramatic changes in economy, energy and air pollution status.
Jing Cao, Richard Garbaccio, and Mun S Ho. 2009. “China's 11th Five-Year Plan and the environment: Reducing SO2 emissions.” Review of Environmental Economics and Policy, 3, 2, Pp. 189-208. Publisher's VersionAbstract
China's rapid economic growth has been accompanied by a high level of environmental degradation. One of the major sources of health and ecosystem damages is sulfur dioxide (SO2). Reducing SO2 emissions is a priority of China's environmental authorities, and the 11th Five-Year Plan (2006–2010) includes the target of reducing total SO2 emissions by 10 percent from the 2005 level. Given the rapid increase in SO2 emissions that is expected to occur in absence of intervention, attaining this target will require a significant effort. This article examines the two major policy measures the government is taking to achieve the SO2 target: a shutdown of many small, inefficient power plants and the installation of desulfurization equipment on existing and new coal-fired plants. We present results from a joint U.S.–China study that we participated in, which estimated the costs and benefits of these policies. We then estimate the economy-wide impacts of the two policies using a multisector model of the Chinese economy. We find that in the aggregate, the economic benefits of the shutdown of the small power plants are large enough to offset the costs of the desulfurization equipment, even without considering the substantial environmental benefits from the reduction of emissions of SO2 and other pollutants.
Yuxuan Wang, Michael B. McElroy, Randall V Martin, David G Streets, Qiang Zhang, and Tung-May Fu. 2007. “Seasonal variability of NOx emissions over east China constrained by satellite observations: Implications for combustion and microbial sources.” Journal of Geophysical Research, 112, D06301. Publisher's VersionAbstract
Observations of tropospheric column densities of NO2 obtained from the Global Ozone Monitoring Experiment (GOME) for a 3‐year period (1997, 1998, and 2000) are used to derive average seasonal variations in surface emissions of NOx from east China (100–123°E, 20–42°N). The retrieval allows for zonal variations in the contribution of the stratosphere to the NO2 column and removes a bias of ±10% on the seasonality of retrieved columns introduced by cloud screening. The top‐down inventory is constructed using an inversion approach with a global 3‐D chemical transport model (GEOS‐Chem) and combined subsequently with the a priori inventory to develop an a posteriori inventory. The contribution of background NO2 arising from nonsurface sources (lightning) and long‐range transport of emissions originating outside of east China is accounted for in the inversion. The a posteriori estimate of overall emissions for east China, 4.66 Tg N/yr (±30% uncertainty), is 33% higher than the a priori value and is shown to improve agreement with surface measurements of nitrate wet deposition and concentrations of NOy observed in China. On the basis of multiple constraints on the spatial and seasonal variations of combustion and microbial processes, the a posteriori inventory is partitioned among emissions from biomass burning, fuel combustion, and microbial activity (or soil emissions). Emission of NOx from biomass burning in east China is estimated as 0.08 TgN/yr ± 50% in the a posteriori inventory, increased by about a factor of 2 from the a priori estimate. The resulting a posteriori inventory for fuel combustion (3.72 TgN/yr ± 32%) is about 15% higher than the a priori and exhibits a distinct maximum in winter, in contrast to the weak seasonality indicated in the a priori inventory. The a posteriori value for the microbial source of NOx (0.85 TgN/yr ± 40%) is about a factor of 3 higher than the a priori value, amounting to 23% of combustion sources for east China and significantly higher than a priori value of 7%. The microbial source is unimportant in winter. It peaks in summer, accounting for as much as 43% of the combustion source for that season, and is significant also in spring and fall. This seasonality is attributed to the timing of fertilizer application and to the influence of seasonally variable environmental factors including temperature and precipitation.
Chris P Nielsen, Mun S Ho, Yu Zhao, Yuxuan Wang, Yu Lei, and Jing Cao. 2013. “Summary: Sulfur Mandates and Carbon Taxes for 2006-2010.” In Clearer Skies Over China: Reconciling Air Quality, Climate, and Economic Goals, Pp. 59-102. Cambridge, MA: MIT Press. Publisher's VersionAbstract

A groundbreaking U.S.–Chinese inquiry into the effects of recent air pollution controls and prospective carbon taxes on China's economy and environment.

China's carbon dioxide emissions now outstrip those of other countries and its domestic air quality is severely degraded, especially in urban areas. Its sheer size and its growing, fossil-fuel-powered economy mean that China's economic and environmental policy choices will have an outsized effect on the global environmental future. Over the last decade, China has pursued policies that target both fossil fuel use and atmospheric emissions, but these efforts have been substantially overwhelmed by the country's increasing energy demands. With a billion citizens still living on less than $4,000 per year, China's energy and environmental policies must be reconciled with the goals of maintaining economic growth and raising living standards.

This book, a U.S.–Chinese collaboration of experts from Harvard and Tsinghua University, offers a groundbreaking integrated analysis of China's economy, emissions, air quality, public health, and agriculture. It first offers essential scientific context and accessible summaries of the book's policy findings; it then provides the underlying scientific and economic research. These studies suggest that China's recent sulfur controls achieved enormous environmental health benefits at unexpectedly low costs. They also indicate that judicious implementation of carbon taxes could reduce not only China's carbon emissions but also its air pollution more comprehensively than current single-pollutant policies, all at little cost to economic growth.

Yanyang Mei, Qingfeng Che, Qing Yang, Christopher Draper, Haiping Yang, Shihong Zhang, and Hanping Chen. 2016. “Torrefaction of different parts from a corn stalk and its effect on the characterization of products.” Industrial Crops and Products, 92, 15 December, Pp. 26-33. Publisher's VersionAbstract

Torrefaction of biomass can reduce its undesirable properties for the subsequent thermochemical application. After separating a Chinese corn stalk into four parts (leaf, stem, root, and cob), torrefaction was performed at temperatures of 200, 250, and 300 °C respectively. The structural and components differences of various parts were analyzed, along with the solid, gas, and liquid products. The study showed that the root was the most sensitive to heat and the cob showed the biggest increase in CO2 and CO yields with the increase temperature, due to their different content of hemicellulose and cellulose. The torrefaction temperature of 250 °C was especially significant for the formation of acids. Liquid product from the leaf was simpler in composition and lower in yield due to higher content of organic extractives and ash. Generally, various parts have different torrefaction properties due to the differences in chemical composition and cellular structure. And with the thermochemical application of biomass were more widely used in the chemical industry especially fine chemical industry, screening and classification may be necessary.

Yu Lei, Qiang Zhang, Kebin He, and David G Streets. 2011. “Primary anthropogenic aerosol emission trends for China, 1990-2005.” Atmospheric Chemistry and Physics, 11, Pp. 931-954. Publisher's VersionAbstract
An inventory of anthropogenic primary aerosol
emissions in China was developed for 1990–2005 using a
technology-based approach. Taking into account changes
in the technology penetration within industry sectors and
improvements in emission controls driven by stricter emission
standards, a dynamic methodology was derived and implemented
to estimate inter-annual emission factors. Emission
factors of PM2.5 decreased by 7%–69% from 1990 to
2005 in different industry sectors of China, and emission factors
of TSP decreased by 18%–80% as well, with the measures
of controlling PM emissions implemented. As a result,
emissions of PM2.5 and TSP in 2005 were 11.0 Tg and
29.7 Tg, respectively, less than what they would have been
without the adoption of these measures. Emissions of PM2.5,
PM10 and TSP presented similar trends: they increased in
the first six years of 1990s and decreased until 2000, then
increased again in the following years. Emissions of TSP
peaked (35.5 Tg) in 1996, while the peak of PM10 (18.8 Tg)
and PM2.5 (12.7 Tg) emissions occurred in 2005. Although
various emission trends were identified across sectors, the cement
industry and biofuel combustion in the residential sector
were consistently the largest sources of PM2.5 emissions,
accounting for 53%–62% of emissions over the study period.
The non-metallic mineral product industry, including the cement,
lime and brick industries, accounted for 54%–63% of
national TSP emissions. There were no significant trends of
BC and OC emissions until 2000, but the increase after 2000
brought the peaks of BC (1.51 Tg) and OC (3.19 Tg) emissions
in 2005. Although significant improvements in the estimation
of primary aerosols are presented here, there still
exist large uncertainties. More accurate and detailed activity
information and emission factors based on local tests are essential
to further improve emission estimates, this especially
being so for the brick and coke industries, as well as for coal.
Nielsen in EHP on Encouraging PM2.5 Trends in China

Nielsen in EHP on Encouraging PM2.5 Trends in China

February 29, 2016

Project Executive Director Chris NIELSEN is quoted in the journal Environmental Health Perspectives regarding satellite-based evidence that annual average PM2.5 concentrations have declined throughout most of China since 2007, contrary to widespread popular perceptions. 

Nielsen comments that the new findings from the study, led by colleagues MA Zongwei and LIU Yang of Emory University, are consistent with effects of various factors on air quality, and match...

Read more about Nielsen in EHP on Encouraging PM2.5 Trends in China

Pages