Renewable and Low-Carbon Electric Power and Grid Integration

Xi Lu, Liang Cao, Haikun Wang, Wei Peng, Jia Xing, Shuxiao Wang, Siyi Cai, Bo Shen, Qing Yang, Chris P. Nielsen, and Michael B. McElroy. 2019. “Gasification of coal and biomass as a net carbon-negative power source for environment-friendly electricity generation in China.” Proceedings of the National Academy of Sciences, 116, 17, Pp. 8206-8213. Publisher's VersionAbstract
Realizing the goal of the Paris Agreement to limit global warming to 2 °C by the end of this century will most likely require deployment of carbon-negative technologies. It is particularly important that China, as the world’s top carbon emitter, avoids being locked into carbon-intensive, coal-fired power-generation technologies and undertakes a smooth transition from high- to negative-carbon electricity production. We focus here on deploying a combination of coal and biomass energy to produce electricity in China using an integrated gasification cycle system combined with carbon capture and storage (CBECCS). Such a system will also reduce air pollutant emissions, thus contributing to China’s near-term goal of improving air quality. We evaluate the bus-bar electricity-generation prices for CBECCS with mixing ratios of crop residues varying from 0 to 100%, as well as associated costs for carbon mitigation and cobenefits for air quality. We find that CBECCS systems employing a crop residue ratio of 35% could produce electricity with net-zero life-cycle emissions of greenhouse gases, with a levelized cost of electricity of no more than 9.2 US cents per kilowatt hour. A carbon price of approximately $52.0 per ton would make CBECCS cost-competitive with pulverized coal power plants. Therefore, our results provide critical insights for designing a CBECCS strategy in China to harness near-term air-quality cobenefits while laying the foundation for achieving negative carbon emissions in the long run.
Yu Wang, Dasaraden Mauree, Qie Sun, Haiyang Lin, Jean-Louis Scartezzini, and Ronald Wennersten. 2020. “A review of approaches to low-carbon transition of high-rise residential buildings in China.” Renewable and Sustainable Energy Reviews, 131, October 2020, Pp. 109990. Publisher's VersionAbstract

In developing countries with a large population and fast urbanization, High-rise Residential Buildings (HRBs) have unavoidably become a very common, if not the most, accommodation solution. The paradigm of HRB energy consumption is characterized by high-density energy consumption, severe peak effects and a limited site area for integrating renewable energy, which constitute a hindrance to the low-carbon transition. This review paper investigates low-carbon transition efforts in the HRB sector from the perspective of urban energy systems to get a holistic view of their approaches. The HRB sector plays a significant role in reducing carbon emission and improving the resilience of urban energy systems. Different approaches to an HRB low-carbon transition are investigated and a brief overview of potential solutions is offered from the perspectives of improving energy efficiency, self-sufficiency and system resilience. The trends of decarbonization, decentralization and digitalization in the HRB sector allow a better alignment with transitioning urban energy systems and create cross-sectoral integration opportunities for low-carbon transition. It is also found that policy tools are powerful driving forces in China for incentivizing transition behaviors among utilities, end users and developers. Based on a comprehensive policy review, the policy implications are given. The research is geared for the situation in China but could also be used as an example for other developing countries that have similar urbanization patterns. Future research should focus on quantitative analysis, life-cycle analysis and transdisciplinary planning approaches.

Fei Xiao, Tianguang Lu, Qian Ai, Xiaolong Wang, Xinyu Chen, Sidun Fang, and Qiuwei Wu. 2020. “Design and implementation of a data-driven approach to visualizing power quality.” IEEE Transactions on Smart Grid, 114, DOI: 10.1109/TSG.2020.2985767. Publisher's VersionAbstract
Numerous underlying causes of power-quality (PQ) disturbances have enhanced the application of situational awareness to power systems. This application provides an optimal overall response for contingencies. With measurement data acquired by a multi-source PQ monitoring system, we propose an interactive visualization tool for PQ disturbance data based on a geographic information system (GIS). This tool demonstrates the spatio–temporal distribution of the PQ disturbance events and the cross-correlation between PQ records and environmental factors, leveraging Getis statistics and random matrix theory. A methodology based on entity matching is also introduced to analyze the underlying causes of PQ disturbance events. Based on real-world data obtained from an actual power system, offline and online PQ data visualization scenarios are provided to verify the effectiveness and robustness of the proposed framework.
Peter Sherman, Xinyu Chen, and Michael B. McElroy. 2020. “Offshore wind: an opportunity for cost-competitive decarbonization of China’s energy economy.” Science Advances, 6, 8, Pp. eaax9571. Publisher's VersionAbstract
China has reduced growth in its emissions of greenhouse gases, success attributable in part due to major investments in onshore wind. By comparison, investments in offshore wind have been minor, limited until recently largely by perceptions of cost. Assimilated meteorological data are used here to assess future offshore wind potential for China. Analysis on a provincial basis indicates that the aggregate potential wind resource is 5.4 times larger than current coastal demand for power. Recent experiences with markets both in Europe and the US suggest that potential offshore resources in China could be exploited to cost-competitively provide 1148.3 TWh of energy in a high-cost scenario, 6383.4 TWh in a low-cost option, equivalent to between 36% and 200% of the total coastal energy demand post 2020. The analysis underscores significant benefits for offshore wind for China, with prospects for major reductions greenhouse emissions with ancillary benefits for air quality.
The potential of photovoltaics to power the Belt and Road Initiative
Shi Chen, Xi Lu, Yufei Miao, Yu Deng, Chris P. Nielsen, Noah Elbot, Yuanchen Wang, Kathryn G. Logan, Michael B. McElroy, and Jiming Hao. 2019. “The potential of photovoltaics to power the Belt and Road Initiative.” Joule, 3, Pp. 1-18. Publisher's VersionAbstract
Construction of carbon-intensive energy infrastructure is well underway under the Belt & Road Initiative (BRI), challenging the global climate target. Regionally abundant solar power could provide an alternative for electricity generation. An integrative spatial model was developed to evaluate the technical potential of solar photovoltaic power. The influence of impacting factors was quantified systematically on an hourly basis. Results suggest that the electricity potential for the BRI region reaches 448.9 PWh annually, 41.3 times the regional demand for electricity in 2016. Tapping 3.7% of the potential through deploying 7.8 TW capacity could satisfy the regional electricity demand projected for 2030, requiring an investment of approximately 11.2 trillion 2017 USD and a commitment in land area of 88,426 km2, approximately 0.9% of China’s total. Countries endowed with 70.7% of the overall potential consume only 30.1% of regional electricity. The imbalance underscores the advantage of regional cooperation and investments in interconnected grids.
China’s CO2 peak before 2030 implied from diverse characteristics and growth of cities
Haikun Wang, Xi Lu, Yu Deng, Yaoguang Sun, Chris P. Nielsen, Yifan Liu, Ge Zhu, Maoliang Bu, Jun Bi, and Michael B. McElroy. 2019. “China’s CO2 peak before 2030 implied from diverse characteristics and growth of cities.” Nature Sustainability, 2, Pp. 748–754. Publisher's VersionAbstract

China pledges to peak CO2 emissions by 2030 or sooner under the Paris Agreement to limit global warming to 2 °C or less by the end of the century. By examining CO2 emissions from 50 Chinese cities over the period 2000–2016, we found a close relationship between per capita emissions and per capita gross domestic product (GDP) for individual cities, following the environmental Kuznets curve, despite diverse trajectories for CO2 emissions across the cities. Results show that carbon emissions peak for most cities at a per capita GDP (in 2011 purchasing power parity) of around US$21,000 (80% confidence interval: US$19,000 to 22,000). Applying a Monte Carlo approach to simulate the peak of per capita emissions using a Kuznets function based on China’s historical emissions, we project that emissions for China should peak at 13–16 GtCO2 yr−1 between 2021 and 2025, approximately 5–10 yr ahead of the current Paris target of 2030. We show that the challenges faced by individual types of Chinese cities in realizing low-carbon development differ significantly depending on economic structure, urban form and geographical location.


Solar Energy Could Turn the Belt and Road Initiative Green

June 27, 2019

Researchers quantify the region's renewable energy potential

The region covered by the Belt and Road Initiative (BRI) has significant potential to be powered by solar energy, researchers report June 27 in the journal Joule. Less than 4 percent of the maximum solar potential of the region could meet the BRI's electricity demand for 2030. The research suggests a possible solution to reduce BRI countries' need for fossil fuels as they develop. This is the first time the renewable energy potential of the region is quantified.

The Chinese...

Read more about Solar Energy Could Turn the Belt and Road Initiative Green
Hongjian Wei, Wenzhi Liu, Xinyu Chen, Qing Yang, Jiashuo Li, and Hanping Chen. 2019. “Renewable bio-jet fuel production for aviation: a review.” Fuel, 254. Publisher's VersionAbstract

Due to excessive greenhouse gas emissions and high dependence on traditional petroleum jet fuel, the sustainable development of the aviation industry has drawn increasing attention worldwide. One of the most promising strategies is to develop and industrialize alternative aviation fuels produced from renewable resources, e.g. biomass. Renewable bio-jet fuel has the potential to reduce CO2 emissions over their life cycle, which make bio-jet fuels an attractive substitution for aviation fuels. This paper provided an overview on the conversion technologies, economic assessment, environmental influence and development status of bio-jet fuels. The results suggested that hydrogenated esters and fatty acids, and Fischer-Tropsch synthesis can be the most promising technologies for bio-jet fuels production in near term. Future works, such as searching for more suitable feedstock, improving competitiveness for alternative jet fuels, meeting emission reduction targets in large-scale production and making measures for the indirect impact are needed for further investigation. The large-scale deployment of bio-jet fuels could achieve significant potentials of both bio-jet fuels production and CO2 emissions reduction based on future available biomass feedstock.

Barbara Finamore

Will China Save the Planet? Book talk and discussion with Barbara Finamore

February 20, 2019

The Harvard Law School Library, along with the Harvard-China Project, East Asian Legal Studies, and the HLS Environmental Law Society, recently co-hosted Barbara Finamore, senior attorney and Asia senior strategic director at the Natural Resources Defense Council (NRDC), for a book talk and discussion on her latest release,...

Read more about Will China Save the Planet? Book talk and discussion with Barbara Finamore
2019 Mar 07

China and Asia in a Changing Climate: Natural Science for the Non-Scientist

12:15pm to 1:45pm


CGIS South S020, Belfer Case Study Room, 1730 Cambridge St., Cambridge, MA


  • Professor John Holdren, Teresa and John Heinz Professor of Environmental Policy, Harvard Kennedy School (HKS) and Department of Earth and Planetary Sciences, Harvard University; Co-Director of Science, Technology, and Public Policy Program, HKS; former Science Advisor to President Barack Obama and former Director of the White House Office of Science and Technology Policy
  • Professor Peter Huybers, Department of Earth and Planetary Sciences, Harvard University, and Harvard John A. Paulson School of Engineering and Applied Sciences
  • Professor Elsie SunderlandGordon McKay Professor of Environmental Chemistry, Harvard John A. Paulson School of Engineering and Applied Sciences and Harvard T.H. Chan School of Public Health
  • Professor Steve Wofsy, Abbott Lawrence Rotch Professor of Atmospheric and Environmental Science, Department of Earth and Planetary Sciences, Harvard University, and Harvard John A. Paulson School of Engineering and Applied Sciences

Chair: Professor Mike McElroy, Gilbert Butler Professor of Environmental Studies, Department of Earth and Planetary Sciences, Harvard University, and Harvard John A. Paulson School of Engineering and Applied Sciences; Chair, Harvard-China Project on Energy, Economy and Environment... Read more about China and Asia in a Changing Climate: Natural Science for the Non-Scientist

Xingning Han, Xinyu Chen, Michael B. McElroy, Shiwu Liao, Chris P. Nielsen, and Jinyu Wen. 2019. “Modeling formulation and validation for accelerated simulation and flexibility assessment on large scale power systems under higher renewable penetrations.” Applied Energy, 237, Pp. 145-154. Publisher's VersionAbstract
Deploying high penetration of variable renewables represents a critical pathway for decarbonizing the power sector. Hydro power (including pumped-hydro), batteries, and fast responding thermal units are essential in providing system flexibility at elevated renewable penetration. How to quantify the merit of flexibility from these sources in accommodating variable renewables, and to evaluate the operational costs considering system flexibility constraints have been central challenges for future power system planning. This paper presents an improved linear formulation of the unit commitment model adopting unit grouping techniques to expedite evaluation of the curtailment of renewables and operational costs for large-scale power systems. All decision variables in this formulation are continuous, and all chronological constraints are formulated subsequently. Tested based on actual data from a regional power system in China, the computational speed of the model is more than 20,000 times faster than the rigorous unit commitment model, with less than 1% difference in results. Hourly simulation for an entire year takes less than 3 min. The results demonstrate strong potential to apply the proposed model to long term planning related issues, such as flexibility assessment, wind curtailment analysis, and operational cost evaluation, which could set a methodological foundation for evaluating the optimal combination of wind, solar and hydro investments.