Chen, Xinyu

2017
Peter Sherman, Xinyu Chen, and Michael B. McElroy. 2017. “Wind-generated electricity in China: Decreasing potential, inter-annual variability, and association with climate change.” Scientific Reports, 7. Publisher's VersionAbstract
China hosts the world’s largest market for wind-generated electricity. The financial return and carbon reduction benefits from wind power are sensitive to changing wind resources. Wind data derived from an assimilated meteorological database are used here to estimate what the wind generated electricity in China would have been on an hourly basis over the period 1979 to 2015 at a geographical resolution of approximately 50 km × 50 km. The analysis indicates a secular decrease in generating potential over this interval, with the largest declines observed for western Inner Mongolia (15 ± 7%) and the northern part of Gansu (17 ± 8%), two leading wind investment areas. The decrease is associated with long-term warming in the vicinity of the Siberian High (SH), correlated also with the observed secular increase in global average surface temperatures. The long-term trend is modulated by variability relating to the Pacific Decadal Oscillation (PDO) and the Arctic Oscillation (AO). A linear regression model incorporating indices for the PDO and AO, as well as the declining trend, can account for the interannual variability of wind power, suggesting that advances in long-term forecasting could be exploited to markedly improve management of future energy systems.
Science_Reports_Full_Text
2016
Ning Zhang, Xi Lu, Chris P Nielsen, Michael B. McElroy, Xinyu Chen, Yu Deng, and Chongqing Kang. 2016. “Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage.” Applied Energy, 184, Pp. 987-994. Publisher's VersionAbstract

Accommodating variable wind power poses a critical challenge for electric power systems that are heavily dependent on combined heat and power (CHP) plants, as is the case for north China. An improved unit-commitment model is applied to evaluate potential benefits from pumped hydro storage (PHS) and electric boilers (EBs) in West Inner Mongolia (WIM), where CHP capacity is projected to increase to 33.8 GW by 2020. A business-as-usual (BAU) reference case assumes deployment of 20 GW of wind capacity. Compared to BAU, expanding wind capacity to 40 GW would allow for a reduction in CO2 emissions of 33.9 million tons, but at a relatively high cost of US$25.3/ton, reflecting primarily high associated curtailment of wind electricity (20.4%). A number of scenarios adding PHS and/or EBs combined with higher levels of wind capacity are evaluated. The best case indicates that a combination of PHS (3.6 GW) and EBs (6.2 GW) together with 40 GW of wind capacity would reduce CO2 emissions by 43.5 million tons compared to BAU, and at a lower cost of US$16.0/ton. Achieving this outcome will require a price-incentive policy designed to ensure the profitability of both PHS and EB facilities.

2014
Xi Lu, Michael B. McElroy, Xinyu Chen, and Chongqing Kang. 2014. “Opportunity for offshore wind to reduce future demand for coal-fired power plants in China with consequent savings in emissions of CO2.” Environmental Science & Technology, 48, 24, Pp. 14764–14771. Publisher's VersionAbstract

Although capacity credits for wind power have been embodied in power systems in the U.S. and Europe, the current planning framework for electricity in China continues to treat wind power as a non-dispatchable source with zero contribution to firm capacity. This study adopts a rigorous reliability model for the electric power system evaluating capacity credits that should be recognized for offshore wind resources supplying power demands for Jiangsu, China. Jiangsu is an economic hub located in the Yangtze River delta accounting for 10% of the total electricity consumed in China. Demand for electricity in Jiangsu is projected to increase from 331 TWh in 2009 to 800 TWh by 2030. Given a wind penetration level of 60% for the future additional Jiangsu power supply, wind resources distributed along the offshore region of five coastal provinces in China (Shandong, Jiangsu, Shanghai, Zhejiang and Fujian) should merit a capacity credit of 12.9%, the fraction of installed wind capacity that should be recognized to displace coal-fired systems without violating the reliability standard. In the high-coal-price scenario, with 60% wind penetration, reductions in CO2 emissions relative to a business as usual reference could be as large as 200.2 million tons of CO2 or 51.8% of the potential addition, with a cost for emissions avoided of $29.0 per ton.

 

Xinyu Chen, Xi Lu, Michael B. McElroy, Chris P Nielsen, and Chongqing Kang. 2014. “Synergies of wind power and electrified space heating: A case study for Beijing.” Environmental Science & Technology, 48, 3, Pp. 2016–2024. Publisher's VersionAbstract

Demands for electricity and energy to supply heat are expected to expand by 71% and 47%, respectively, for Beijing in 2020 relative to 2009. If the additional electricity and heat are supplied solely by coal as is the current situation, annual emissions of CO2 may be expected to increase by 59.6% or 99 million tons over this interval. Assessed against this business as usual (BAU) background, the present study indicates that significant reductions in emissions could be realized using wind-generated electricity to provide a source of heat, employed either with heat pumps or with electric thermal storage (ETS) devices. Relative to BAU, reductions in CO2 with heat pumps assuming 20% wind penetration could be as large as 48.5% and could be obtained at a cost for abatement of as little as $15.6 per ton of avoided CO2. Even greater reductions, 64.5%, could be realized at a wind penetration level of 40% but at a higher cost, $29.4 per ton. Costs for reduction of CO2 using ETS systems are significantly higher, reflecting the relatively low efficiency for conversion of coal to power to heat.

2013
Xi Lu, Michael B. McElroy, Chris P Nielsen, Xinyu Chen, and Junling Huang. 2013. “Optimal integration of offshore wind power for a steadier, environmentally friendlier, supply of electricity in China.” Energy Policy, 62, Pp. 131–138. Publisher's VersionAbstract

Demand for electricity in China is concentrated to a significant extent in its coastal provinces. Opportunities for production of electricity by on-shore wind facilities are greatest, however, in the north and west of the country. Using high resolution wind data derived from the GEOS-5 assimilation, this study shows that investments in off-shore wind facilities in these spatially separated regions (Bohai-Bay or BHB, Yangtze-River Delta or YRD, Pearl-River Delta or PRD) could make an important contribution to overall regional demand for electricity in coastal China. An optimization analysis indicates that hour-to-hour variability of outputs from a combined system can be minimized by investing 24% of the power capacity in BHB, 30% in YRD and 47% in PRD. The analysis suggests that about 28% of the overall off-shore wind potential could be deployed as base load power replacing coal-fired system with benefits not only in terms of reductions in CO2 emissions but also in terms of improvements in regional air quality. The interconnection of off-shore wind resources contemplated here could be facilitated by China's 12th-five-year plan to strengthen inter-connections between regional electric-power grids.

Pages