Lu, Tianguang

Fei Xiao, Tianguang Lu, Qian Ai, Xiaolong Wang, Xinyu Chen, Sidun Fang, and Qiuwei Wu. 2020. “Design and implementation of a data-driven approach to visualizing power quality.” IEEE Transactions on Smart Grid, 114, DOI: 10.1109/TSG.2020.2985767. Publisher's VersionAbstract
Numerous underlying causes of power-quality (PQ) disturbances have enhanced the application of situational awareness to power systems. This application provides an optimal overall response for contingencies. With measurement data acquired by a multi-source PQ monitoring system, we propose an interactive visualization tool for PQ disturbance data based on a geographic information system (GIS). This tool demonstrates the spatio–temporal distribution of the PQ disturbance events and the cross-correlation between PQ records and environmental factors, leveraging Getis statistics and random matrix theory. A methodology based on entity matching is also introduced to analyze the underlying causes of PQ disturbance events. Based on real-world data obtained from an actual power system, offline and online PQ data visualization scenarios are provided to verify the effectiveness and robustness of the proposed framework.
Tianguang Lu, Peter Sherman, Xinyu Chen, Shi Chen, Xi Lu, and Michael B. McElroy. 2020. “India’s potential for integrating solar and on- and offshore wind power into its energy system.” Nature Communications, 11, 4750. Publisher's VersionAbstract
This paper considers options for a future Indian power economy in which renewables, wind and solar, could meet 80% of anticipated 2040 power demand supplanting the country’s current reliance on coal. Using a cost optimization model, here we show that renewables could provide a source of power cheaper or at least competitive with what could be supplied using fossil-based alternatives. The ancillary advantage would be a significant reduction in India’s future power sector related emissions of CO2. Using a model in which prices for wind turbines and solar PV systems are assumed to continue their current decreasing trend, we conclude that an investment in renewables at a level consistent with meeting 80% of projected 2040 power demand could result in a reduction of 85% in emissions of CO2 relative to what might be expected if the power sector were to continue its current coal dominated trajectory.
Tianguang Lu, Xinyu Chen, Michael B. McElroy, Chris Nielsen, Wu Qiuwei, Hongying He, and Qian Ai. 2020. “A reinforcement learning-based decision system for electricity pricing plan selection by smart grid end users.” IEEE Transactions on Smart Grid, 1949-3061 . Publisher's VersionAbstract
With the development of deregulated retail power markets, it is possible for end users equipped with smart meters and controllers to optimize their consumption cost portfolios by choosing various pricing plans from different retail electricity companies. This paper proposes a reinforcement learning-based decision system for assisting the selection of electricity pricing plans, which can minimize the electricity payment and consumption dissatisfaction for individual smart grid end user. The decision problem is modeled as a transition probability-free Markov decision process (MDP) with improved state framework. The proposed problem is solved using a Kernel approximator-integrated batch Q-learning algorithm, where some modifications of sampling and data representation are made to improve the computational and prediction performance. The proposed algorithm can extract the hidden features behind the time-varying pricing plans from a continuous high-dimensional state space. Case studies are based on data from real-world historical pricing plans and the optimal decision policy is learned without a priori information about the market environment. Results of several experiments demonstrate that the proposed decision model can construct a precise predictive policy for individual user, effectively reducing their cost and energy consumption dissatisfaction.
Ran Hao, Tianguang Lu, Qiuwei Wu, Xinyu Chen, and Qian Ai. 2019. “Distributed piecewise approximation economic dispatch for regional power systems under non-ideal communication.” IEEE Access, 7. Publisher's VersionAbstract
Appropriate distributed economic dispatch (DED) strategies are of great importance to manage wide-area controllable generators in wide-area regional power systems. Compared with existing works related to ED, where dispatch algorithms are carried out by a centralized controller, a practical DED scheme is proposed in this paper to achieve the optimal dispatch by appropriately allocating the load to generation units while guaranteeing consensus among incremental costs. The ED problem is decoupled into several parallel sub-problems by the primal-dual principle to address the computational issue of satisfying power balance between the demand and the supply from the distributed regional power system. The feasibility test and an innovative mechanism for unit commitment are then designed to handle extreme operation situations, such as low load level and surplus generation. In the designed mechanism, the on/off status of units is determined in a fully distributed framework, which is solved using the piecewise approximation method and the discrete consensus algorithm. In the algorithm, the push-sum protocol is proposed to increase the system adaptation on the time-varying communication topology. Moreover, consensus gain functions are designed to ensure the performance of the proposed DED under communication noise. Case studies on a standard IEEE 30-bus system demonstrate the effectiveness of our proposed methodology