McElroy, Michael B.

2023
Xi Lu, Shi Chen, Chris Nielsen, Michael McElroy, Gang He, Shaohui Zhang, Kebin He, Xiu Yang, Fang Zhang, and Jiming Hao. 2023. “Deploying solar photovoltaic energy first in carbon-intensive regions brings gigatons more carbon mitigation by 2060.” Communications Earth & Environment, 4, 369. Publisher's VersionAbstract
The global surge in solar photovoltaic (PV) power has featured spatial specialization from manufacturing to installation along its industrial chain. Yet how to improve PV climate benefits are under-investigated. Here we explore the evolution of net greenhouse gas (GHG) mitigation of PV industry from 2009–2060 with a spatialized-dynamic life-cycle-analysis. Results suggest a net GHG mitigation of 1.29 Gt CO2-equivalent from 2009–2019, achieved by 1.97 Gt of mitigation from installation minus 0.68 Gt of emissions from manufacturing. The highest net GHG mitigation among future manufacturing-installation-scenarios to meet 40% global power demand in 2060 is as high as 204.7 Gt from 2020–2060, featuring manufacturing concentrated in Europe and North America and prioritized PV installations in carbon-intensive nations. This represents 97.5 Gt more net mitigation than the worst-case scenario, equivalent to 1.9 times 2020 global GHG emissions. The results call for strategic international coordination of PV industrial chain to increase GHG net mitigation.
Xinyang Guo, Xinyu Chen, Xia Chen, Peter Sherman, Jinyu Wen, and Michael McElroy. 2023. “Grid integration feasibility and investment planning of offshore wind power under carbon-neutral transition in China.” Nature Communications, 14, 2447. Publisher's VersionAbstract
Offshore wind power, with accelerated declining levelized costs, is emerging as a critical building-block to fully decarbonize the world’s largest CO2 emitter, China. However, system integration barriers as well as system balancing costs have not been quantified yet. Here we develop a bottom-up model to test the grid accommodation capabilities and design the optimal investment plans for offshore wind power considering resource distributions, hourly power system simulations, and transmission/storage/hydrogen investments. Results indicate that grid integration barriers exist currently at the provincial level. For 2030, optimized offshore wind investment levels should be doubled compared with current government plans, and provincial allocations should be significantly improved considering both resource quality and grid conditions. For 2050, offshore wind capacity in China could reach as high as 1500 GW, prompting a paradigm shift in national transmission structure, favoring long-term storage in the energy portfolio, enabling green hydrogen production in coastal demand centers, resulting in the world’s largest wind power market.
Jingran Zhang, Yiliang Jiang, Yunjie Wang, Shaojun Zhang, Ye Wu, Shuxiao Wang, Chris P Nielsen, Michael B McElroy, and Jiming Hao. 2023. “Increased Impact of Aviation on Air Quality and Human Health in China.” Environmental Science & Technology, 2023, Pp. 19575–19583. Publisher's VersionAbstract
China’s civil aviation market has rapidly expanded, becoming the world’s second-largest. However, the air quality and health impacts caused by its aircraft emissions have been inadequately assessed. Here, we leverage an updated emission inventory of air pollutants with improved temporal and spatial resolution based on hundreds of thousands of flight trajectories and simulate aviation-attributable contributions to ground-level air pollution in China. We find that in 2017, the annual-average aviation-attributed PM2.5 and O3 concentrations were 0.4–1.5 and 10.6–14.5 μg·m–3, respectively, suggesting that aviation emissions have become an increasingly important source of ambient air pollution. The contributions attributable to high-altitude emissions (climb/cruise/descent) were comparable to those at low altitudes (landing and takeoff). Aviation-attributed ambient PM2.5 and O3 exposures are estimated to have caused about 67,000 deaths in China in 2017, with populous coastal regions in Eastern China suffering the most due to the dense aviation activity. We recommend that industrial and policy stakeholders expedite an agenda of regulating air pollutants harmonized with decarbonization efforts for a more sustainable aviation future.
Meng Gao, Fan Wang, Yihui Ding, Zhiwei Wu, YangYang Xu, Xiao Lu, Zifa Wang, Gregory R. Carmichael, and Michael B McElroy. 2023. “Large-scale climate patterns offer pre-seasonal hints on the co-occurrence of heat wave and O3 pollution in China.” Proceedings of the National Academy of Sciences (PNAS), 120, 26, Pp. e2218274120. Publisher's VersionAbstract

Heat waves and air pollution extremes exert compounding effects on human health and food security and may worsen under future climate change. On the basis of reconstructed daily O3 levels in China and meteorological reanalysis, we found that the interannual variability of the frequency of summertime co-occurrence of heat wave and O3 pollution in China is regulated mainly by a combination of springtime warming in the western Pacific Ocean, western Indian Ocean, and Ross Sea. These sea surface temperature anomalies impose influences on precipitation, radiation, etc., to modulate the co-occurrence, which were also confirmed with coupled chemistry–climate numerical experiments. We thus built a multivariable regression model to predict co-occurrence a season in advance, and correlation coefficient could reach 0.81 (P < 0.01) for the North China Plain. Our results provide useful information for the government to take actions in advance to mitigate damage from these synergistic costressors.

Heat waves and air pollution are two prominent threats, both of which have been reported to cause public health and ecosystem crises, particularly under rapid urbanization and global warming (12). Heat waves, defined as consecutive days of excessively high atmosphere-related heat stress (34), adversely influence human health by impacting respiratory and cardiovascular systems. Heat waves are linked with high O3 episodes that harm human health and vegetation (57). In warm seasons, heat waves and extreme O3 events often occur simultaneously due to common driving meteorological conditions, i.e., stagnant high-pressure systems that favor accumulation of heat and O3 precursors (8). Besides, complex chemistry–climate feedbacks through biogenic emissions (source) and uptake by plants (sink) could exacerbate co-occurrence of heat wave and O3 extremes (9). It is imperative to understand driving factors for the co-occurrence of heat and O3 extremes, as accumulating evidence suggests amplified health outcomes beyond the sum of individual effects (1012). Analitis et al. (13) reported that the number of daily deaths during heat wave episodes was 54% higher on high O3 days compared with low O3 days.

Previous studies have linked occurrences of heat waves or O3 extremes, separately, with large-scale atmospheric circulation or sea surface temperature (SST) anomalies (1420). For instance, Zhu et al. (17) demonstrated that the frequency and variability of summertime heat waves over North America was closely associated with SST anomalies in the tropical Atlantic and tropical western Pacific in spring and El Niño–Southern Oscillation phase change. Shen and Mickley (21) showed that O3 concentration in Eastern United States was linked with warm tropical Atlantic SST and cold northeast Pacific SST, as well as positive sea-level pressure (SLP) anomalies over central Pacific and negative SLP anomalies over the Atlantic and North America. However, the climate factors modulating the co-occurrence of heat and O3 extremes at a regional level remain unclear and had only been the subject of limited studies (82224).

With roughly one-sixth of the world’s population and rapid energy-intensive development, China is facing the dual challenge of air pollution and climate change (2526). Central and Eastern China, especially the North China Plain (NCP), experienced improved PM2.5 air quality over past years due to the implementation of the most stringent clean air policy, but now suffers from largest increases in summertime O3 exposure (27). O3 concentrations in the NCP enhanced at almost twice the average pace across China (28). An amplified upward trend of the joint occurrences of heat and O3 extremes has been identified in China over 2013 to 2020 (29). Understanding the driving climate factors for its interannual variability would contribute to long-term planning of control of costressors. Characterizing interannual variability also enables prediction which could allow sufficient time for mitigation of the interactive damages from joint exposure (213033). Previously, we demonstrated the possibility of seasonal prediction of wintertime aerosol pollution in India (34). Considering the strong linkages between O3 level and climate patterns, we argue here that it may also be possible to predict co-occurrence of heat waves and O3 pollution, potentially up to several years in advance, considering the active efforts in developing reliable seasonal (months ahead) and even longer prediction of climate variability (35).

In this study, we aim to identify leading patterns that control the spatiotemporal variability of occurrence frequency (days in a year) of joint heat wave and O3 pollution events (HWOP). We focus on Central and Eastern China (17.5°N to 47.5°N, 98°E to 125°E), where over 80% Chinese population reside and co-occurrences of HWOP events are prominent. Climate drivers are identified by empirical orthogonal function (EOF), which decomposes historical spatiotemporal variations of HWOP frequency that inferred with atmospheric reanalysis and reconstructed daily O3 datasets. Findings from statistical analyses are further supported by numerical model experiments using the state-of-the-art Community Earth System Model version 2.1.3 (CESM v2.1.3). Encouraged by the robustness of the identified teleconnections between co-occurrence events and SST anomalies, we further build a regression-based statistical model to predict summertime HWOP a season in advance, improving our capability in the management of these important health and vegetation costressors.

 

2022
Xi Yang, Chris P. Nielsen, Shaojie Song, and Michael B. McElroy. 2022. “Breaking the “hard-to-abate” bottleneck in China’s path to carbon neutrality with clean hydrogen.” Nature Energy, 7, Pp. 955–965. Publisher's VersionAbstract
Countries such as China are facing a bottleneck in their paths to carbon neutrality: abating emissions in heavy industries and heavy-duty transport. There are few in-depth studies of the prospective role for clean hydrogen in these ‘hard-to-abate’ (HTA) sectors. Here we carry out an integrated dynamic least-cost modelling analysis. Results show that, first, clean hydrogen can be both a major energy carrier and feedstock that can significantly reduce carbon emissions of heavy industry. It can also fuel up to 50% of China’s heavy-duty truck and bus fleets by 2060 and significant shares of shipping. Second, a realistic clean hydrogen scenario that reaches 65.7 Mt of production in 2060 could avoid US$1.72 trillion of new investment compared with a no-hydrogen scenario. This study provides evidence of the value of clean hydrogen in HTA sectors for China and countries facing similar challenges in reducing emissions to achieve net-zero goals.
Shaojie Song, Haiyang Lin, Peter Sherman, Xi Yang, Shi Chen, Xi Lu, Tianguang Lu, Xinyu Chen, and Michael B. McElroy. 2022. “Deep decarbonization of the Indian economy: 2050 prospects for wind, solar, and green hydrogen.” iScience, 25, 6, Pp. 104399. Publisher's VersionAbstract
The paper explores options for a 2050 carbon free energy future for India. Onshore wind and solar sources are projected as the dominant primary contributions to this objective. The analysis envisages an important role for so-called green hydrogen produced by electrolysis fueled by these carbon free energy sources. This hydrogen source can be used to accommodate for the intrinsic variability of wind and solar complementing opportunities for storage of power by batteries and pumped hydro. The green source of hydrogen can be used also to supplant current industrial uses of gray hydrogen produced in the Indian context largely from natural gas with important related emissions of CO2. The paper explores further options for use of green hydrogen to lower emissions from otherwise difficult to abate sectors of both industry and transport. The analysis is applied to identify the least cost options to meet India’s zero carbon future.
Shi Chen, Xi Lu, Chris P. Nielsen, Guannan Geng, Michael B. McElroy, Shuxiao Wang, and Jiming Hao. 2022. “Improved air quality in China can enhance solar power performance and accelerate carbon neutrality targets.” One Earth, 5, 5, Pp. 550-562. Publisher's VersionAbstract
China forecasts that a 14-fold increase in photovoltaic installations is needed to meet 2060 carbon-neutrality targets. In light of the fact that air pollution impairs photovoltaic performance, pollution control could reduce the installation requirement, but research has not yet taken into account the coeval impact of unfavorable meteorological conditions, which also impair performance. Here, we employ a coupled model to determine the impact of air-pollution control policies on China’s photovoltaic power output in the presence of varying meteorological conditions between 1995 and 2019. We find that the benefits of air-pollution control introduced in 2004 were only partially offset by unfavorable meteorological conditions (primarily in Central and South China) and resulted in solar-power performance improvement of 0.9%/decade from 2008 onward. Further analysis shows that solar-power output in 2020 was 1.7% higher thanks to air-pollution control and that more stringent air-quality targets could reduce the demand for photovoltaic installed capacity needed to meet the 2060 carbon-neutrality target.
Peter Sherman, Haiyang Lin, and Michael B. McElroy. 2022. “Projected global demand for air conditioning associated with extreme heat and implications for electricity grids in poorer countries.” Energy and Buildings, 268, August, Pp. 112198. Publisher's VersionAbstract

Human-induced climate change will increase surface temperatures globally over the next several decades. Climate models project that global mean surface temperature could increase by over 2˚C by 2050 relative to the preindustrial period, with even greater changes at the regional level. These temperature changes have clear and pertinent implications for extremes, and consequentially, heat-induced health issues for people living in particularly hot climates. Here, we study future projections in the demand for AC globally in the 2050s associated with extreme heat events. To do this, we employ an ensemble of CMIP6 models under high and low emissions scenarios. We find that the increasing frequency of extreme temperatures will cause a significant portion of the global population to be exposed to conditions that require cooling. This issue will be especially pervasive in poor countries such as India and Indonesia, which at present lack the AC units required to handle rapidly growing populations and increased frequencies of extreme temperatures. The electricity needed for cooling in these countries could reach as high as 75% of the current total annual electricity demand, which could place serious strain on the electricity grid infrastructure during peak cooling hours. We conclude that demand for cooling in the future will pose a significant challenge for poorer countries whose people will require AC units to handle extreme temperatures. In some countries, the grid infrastructure is insufficient at present to meet projected AC demands, and this need must be considered in future power systems planning.

2021
Combined solar power and storage as cost-competitive and grid-compatible supply for China’s future carbon-neutral electricity system
Xi Lu, Shi Chen, Chris P. Nielsen, Chongyu Zhang, Jiacong Li, Xu He, Ye Wu, Shuxiao Wang, Feng Song, Chu Wei, Kebin He, Michael P. McElroy, and Jiming Hao. 2021. “Combined solar power and storage as cost-competitive and grid-compatible supply for China’s future carbon-neutral electricity system.” Proceedings of the National Academy of Sciences, 118, 42, Pp. e2103471118. Publisher's VersionAbstract

As the world’s largest CO2 emitter, China’s ability to decarbonize its energy system strongly affects the prospect of achieving the 1.5 °C limit in global, average surface-temperature rise. Understanding technically feasible, cost-competitive, and grid-compatible solar photovoltaic (PV) power potentials spatiotemporally is critical for China’s future energy pathway. This study develops an integrated model to evaluate the spatiotemporal evolution of the technology-economic-grid PV potentials in China during 2020 to 2060 under the assumption of continued cost degression in line with the trends of the past decade. The model considers the spatialized technical constraints, up-to-date economic parameters, and dynamic hourly interactions with the power grid. In contrast to the PV production of 0.26 PWh in 2020, results suggest that China’s technical potential will increase from 99.2 PWh in 2020 to 146.1 PWh in 2060 along with technical advances, and the national average power price could decrease from 4.9 to 0.4 US cents/kWh during the same period. About 78.6% (79.7 PWh) of China’s technical potential will realize price parity to coal-fired power in 2021, with price parity achieved nationwide by 2023. The cost advantage of solar PV allows for coupling with storage to generate cost-competitive and grid-compatible electricity. The combined systems potentially could supply 7.2 PWh of grid-compatible electricity in 2060 to meet 43.2% of the country’s electricity demand at a price below 2.5 US cents/kWh. The findings highlight a crucial energy transition point, not only for China but for other countries, at which combined solar power and storage systems become a cheaper alternative to coal-fired electricity and a more grid-compatible option.

Lu et al. is the cover article of this October issue of PNAS. Read the Research Brief.
Xinyu Chen, Yaxing Liu, Qin Wang, Jiajun Lv, Jinyu Wen, Xia Chen, Chongqing Kang, Shijie Cheng, and Michael McElroy. 2021. “Pathway toward carbon-neutral electrical systems in China by mid-century with negative CO2 abatement costs informed by high-resolution modeling.” Joule, 5, 10 (20 October), Pp. 2715-2741. Publisher's VersionAbstract
China, the largest global CO2 emitter, recently announced ambitious targets for carbon neutrality by 2060. Its technical and economic feasibility is unclear given severe renewable integration barriers. Here, we developed a cross-sector, high-resolution assessment model to quantify optimal energy structures on provincial bases for different years. Hourly power system simulations for all provinces for a full year are incorporated on the basis of comprehensive grid data to quantify the renewable balancing costs. Results indicate that the conventional strategy of employing local wind, solar, and storage to realize 80% renewable penetration by 2050 would incur a formidable decarbonization cost of $27/ton despite lower levelized costs for renewables. Coordinated deployment of renewables, ultra-high-voltage transmissions, storages, Power-to-gas and slow-charging electric vehicles can reduce this carbon abatement cost to as low as $−25/ton. Were remaining emissions removed by carbon capture and sequestration technologies, achieving carbon neutrality could be not only feasible but also cost-competitive post 2050.
Shaojie Song, Haiyang Lin, Peter Sherman, Xi Yang, Chris P. Nielsen, Xinyu Chen, and Michael B. McElroy. 2021. “Production of hydrogen from offshore wind in China and cost-competitive supply to Japan.” Nature Communications, 12, 6953. Publisher's VersionAbstract
The Japanese government has announced a commitment to net-zero greenhouse gas emissions by 2050. It envisages an important role for hydrogen in the nation’s future energy economy. This paper explores the possibility that a significant source for this hydrogen could be produced by electrolysis fueled by power generated from offshore wind in China. Hydrogen could be delivered to Japan either as liquid, or bound to a chemical carrier such as toluene, or as a component of ammonia. The paper presents an analysis of factors determining the ultimate cost for this hydrogen, including expenses for production, storage, conversion, transport, and treatment at the destination. It concludes that the Chinese source could be delivered at a volume and cost consistent with Japan’s idealized future projections.
Jonathan D'Souza, Felix Prasanna, Luna-Nefeli Valayannopoulos-Akrivou, Peter John Sherman, Elise Penn, Shaojie Song, Alexander Archibald, and Michael B McElroy. 2021. “Projected changes in seasonal and extreme summertime temperature and precipitation in India in response to COVID-19 recovery emissions scenarios.” Environmental Research Letters, 16, Pp. 114025. Publisher's VersionAbstract
Fossil fuel and aerosol emissions have played important roles on climate over the Indian subcontinent over the last century. As the world transitions toward decarbonization in the next few decades, emissions pathways could have major impacts on India's climate and people. Pathways for future emissions are highly uncertain, particularly at present as countries recover from COVID-19. This paper explores a multimodel ensemble of Earth system models leveraging potential global emissions pathways following COVID-19 and the consequences for India's summertime (June-July-August-September) climate in the near- and long-term. We investigate specifically scenarios which envisage a fossil-based recovery, a strong renewable-based recovery and a moderate scenario in between the two. We find that near-term climate changes are dominated by natural climate variability, and thus likely independent of the emissions pathway. By 2050, pathway-induced spatial patterns in the seasonally-aggregated precipitation become clearer with a drying in the fossil-based scenario and wetting in the strong renewable scenario. Additionally, extreme temperature and precipitation events in India are expected to increase in magnitude and frequency regardless of the emissions scenario, though the spatial patterns of these changes as well as the extent of the change are pathway dependent. This study provides an important discussion on the impacts of emissions recover pathways following COVID-19 on India, a nation which is likely to be particularly susceptible to climate change over the coming decades.
Haiyang Lin, Qiuwei Wu, Xinyu Chen, Xi Yang, Xinyang Guo, Jiajun Lv, Tianguang Lu, Shaojie Song, and Michael B. McElroy. 2021. “Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China.” Renewable Energy, 173, Pp. 569-580. Publisher's VersionAbstract
Hydrogen can play a key role in facilitating the transition to a future deeply decarbonized energy system and can help accommodate higher penetrations of renewables in the power system. Arguments to justify this conclusion are supported by an analysis based on real-world data from China’s Western Inner Mongolia (WIM). The economic feasibility and decarbonization potential of renewable-based hydrogen production are discussed through an integrated power-hydrogen-emission analytical framework. The framework combines a high-resolution wind resource analysis with hourly simulation for the operation of power systems and hydrogen production considering technical and economic specifications on selection of three different types of electrolyzers and two operating modes. The results indicate that using wind power to produce hydrogen could provide a cost-competitive alternative (<2 $kg-1) to WIM’s current coal-dominated hydrogen manufacturing system, contributing at the same time to important reductions in wind curtailment and CO2 emissions. The levelized cost for hydrogen production is projected to decrease in the coming decade consistent with increases in wind power capacity and decreases in capital costs for electrolyzers. Lessons learned from the study can be applied to other regions and countries to explore possibilities for larger scale economically justified and carbon saving hydrogen production with renewables.
Shaojie Song, Tao Ma, Yuzhong Zhang, Lu Shen, Pengfei Liu, Ke Li, Shixian Zhai, Haotian Zheng, Meng Gao, Jonathan M. Moch, Fengkui Duan, Kebin He, and Michael B. McElroy. 2021. “Global modeling of heterogeneous hydroxymethanesulfonate chemistry.” Atmospheric Chemistry and Physics, 21, 1, Pp. 457–481. Publisher's VersionAbstract
Hydroxymethanesulfonate (HMS) has recently been identified as an abundant organosulfur compound in aerosols during winter haze episodes in northern China. It has also been detected in other regions although the concentrations are low. Because of the sparse field measurements, the global significance of HMS and its spatial and seasonal patterns remain unclear. Here, we modify and add to the implementation of HMS chemistry in the GEOS-Chem chemical transport model and conduct multiple global simulations. The model accounts for cloud entrainment and gas–aqueous mass transfer within the rate expressions for heterogeneous sulfur chemistry. Our simulations can generally reproduce quantitative HMS observations from Beijing and show that East Asia has the highest HMS concentration, followed by Europe and North America. The simulated HMS shows a seasonal pattern with higher values in the colder period. Photochemical oxidizing capacity affects the competition of formaldehyde with oxidants (such as ozone and hydrogen peroxide) for sulfur dioxide and is a key factor influencing the seasonality of HMS. The highest average HMS concentration (1–3 µg m−3) and HMS ∕ sulfate molar ratio (0.1–0.2) are found in northern China in winter. The simulations suggest that aqueous clouds act as the major medium for HMS chemistry while aerosol liquid water may play a role if its rate constant for HMS formation is greatly enhanced compared to cloud water.
Minghao Zhuang, Xi Lu, Wei Peng, Yanfen Wang, Jianxiao Wang, Chris P. Nielsen, and Michael B. McElroy. 2021. “Opportunities for household energy on the Qinghai-Tibet Plateau in line with United Nations’ Sustainable Development Goals.” Renewable and Sustainable Energy Reviews, 144, 110982. Publisher's VersionAbstract
Approximately seven million population in the Qinghai-Tibet Plateau of China, a global climate sensitive region, still rely primarily on yak dung for household cooking and heating. The treatment and combustion of yak dung result in a variety of negative impacts in terms of local alpine grassland degradation, indoor air pollution, public health risk, as well as global climate change. There is an urgent need to explore alternative pathway for affordable and clean energy as indicated in the United Nations’ Sustainable Development Goals for 2030. This perspective has analyzed the key challenges rooted in yak dung use on the Qinghai-Tibet Plateau region. Based on this, this perspective has further proposed a new complementary energy system to take advantage of locally available, clean and sustainable energy sources of wind and solar power, and have provided economic analyses. Meanwhile, this perspective has pointed out the potential barriers to promoting the new complementary energy system in the Qinghai-Tibet Plateau region due to traditional habits, economic factors and policies. Finally, strategies for transitioning from yak dung to the proposed alternative energy system is discussed at the end. Successful energy transition for the Qinghai-Tibet Plateau region offers an important option to achieving many other sustainable development goals related to climate change, economic development, and environment. The perspective is expected to shed light on the development of sustainable energy in other developing region or countries in the world to address multiple societal goals.
Peter Sherman, Shaojie Song, Xinyu Chen, and Michael B. McElroy. 2021. “Projected changes in wind power potential over China and India in high resolution climate models.” Environmental Research Letters, 16, 3, Pp. 034057. Publisher's VersionAbstract
As more countries commit to emissions reductions by midcentury to curb anthropogenic climate change, decarbonization of the electricity sector becomes a first-order task in reaching this goal. Renewables, particularly wind and solar power, will be predominant components of this transition. How availability of the wind and solar resource will change in the future in response to regional climate changes is an important and underdiscussed topic of the decarbonization process. Here, we study changes in potential for wind power in China and India, evaluating prospectively until the year 2060. To do this, we study a downscaled, high-resolution multimodel ensemble of CMIP5 models under high and low emissions scenarios. While there is some intermodel variability, we find that spatial changes are generally consistent across models, with decreases of up to 965 (a 1% change) and 186 TWh (a 2% change) in annual electricity generation potential for China and India, respectively. Compensating for the declining resource are weakened seasonal and diurnal variabilities, allowing for easier large-scale wind power integration. We conclude that while the ensemble indicates available wind resource over China and India will decline slightly in the future, there remains enormous potential for significant wind power expansion, which must play a major role in carbon neutral aspirations.
Qing Yang, Hewen Zhou, Pietro Bartocci, Francesco Fantozzi, Ondřej Mašek, Foster Agblevor, Zhiyu Wei, Haiping Yang, Hanping Chen, Xi Lu, Guoqian Chen, Chuguang Zheng, Chris P. Nielsen, and Michael B. McElroy. 2021. “Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals.” Nature Communications, 12, 1698. Publisher's VersionAbstract
Deployment of negative emission technologies needs to start immediately if we are to avoid overshooting international carbon targets, reduce negative climate impacts, and minimize costs of emission mitigation. Actions in China, given its importance for the global anthropogenic carbon budget, can be decisive. While bioenergy with carbon capture and storage (BECCS) may need years to mature, this study focuses on developing a ready-to-implement biomass intermediate pyrolysis poly-generation (BIPP) technology to produce a potentially stable form of biochar, a medium for carbon storage, and to provide a significant source of valuable biofuels, especially pyrolysis gas. Combining the experimental data with hybrid models, the results show that a BIPP system can be profitable without subsidies: its national deployment could contribute to a 68% reduction of carbon emissions per unit of GDP in 2030 compared to 2005 and could result additionally in a reduction in air pollutant emissions. With 73% of national crop residues converted to biochar and other biofuels in the near term (2020 to 2030), the cumulative greenhouse gas (GHG) reduction could reach up to 5653 Mt CO2-eq by 2050, which could contribute 9-20% of the global GHG emission reduction goal for BECCS (28-65 Gt CO2-eq in IPCC’s 1.5 °C pathway), and nearly 2633 Mt more than that projected for BECCS alone. The national BIPP development strategy is developed on a provincial scale based on a regional economic and life-cycle analysis. 
Tianguang Lu, Xinyu Chen, Michael B. McElroy, Chris Nielsen, Qiuwei Wu, Hongying He, and Qian Ai. 2021. “A reinforcement learning-based decision system for electricity pricing plan selection by smart grid end users.” IEEE Transactions on Smart Grid, 12, 3, Pp. 2176-2187. Publisher's VersionAbstract
With the development of deregulated retail power markets, it is possible for end users equipped with smart meters and controllers to optimize their consumption cost portfolios by choosing various pricing plans from different retail electricity companies. This paper proposes a reinforcement learning-based decision system for assisting the selection of electricity pricing plans, which can minimize the electricity payment and consumption dissatisfaction for individual smart grid end user. The decision problem is modeled as a transition probability-free Markov decision process (MDP) with improved state framework. The proposed problem is solved using a Kernel approximator-integrated batch Q-learning algorithm, where some modifications of sampling and data representation are made to improve the computational and prediction performance. The proposed algorithm can extract the hidden features behind the time-varying pricing plans from a continuous high-dimensional state space. Case studies are based on data from real-world historical pricing plans and the optimal decision policy is learned without a priori information about the market environment. Results of several experiments demonstrate that the proposed decision model can construct a precise predictive policy for individual user, effectively reducing their cost and energy consumption dissatisfaction.
Peter Sherman, Meng Gao, Shaojie Song, Alex T. Archibald, Nathan Luke Abraham, Jean-François Lamarque, Drew Shindell, Gregory Faluvegi, and Michael B. McElroy. 2021. “Sensitivity of modeled Indian Monsoon to Chinese and Indian aerosol emissions.” Atmospheric Chemistry and Physics, 21, 5, Pp. 3593–3605. Publisher's VersionAbstract
The South Asian summer monsoon supplies over 80 % of India's precipitation. Industrialization over the past few decades has resulted in severe aerosol pollution in India. Understanding monsoonal sensitivity to aerosol emissions in general circulation models (GCMs) could improve predictability of observed future precipitation changes. The aims here are (1) to assess the role of aerosols on India's monsoon precipitation and (2) to determine the roles of local and regional emissions. For (1), we study the Precipitation Driver Response Model Intercomparison Project experiments. We find that the precipitation response to changes in black carbon is highly uncertain with a large intermodel spread due in part to model differences in simulating changes in cloud vertical profiles. Effects from sulfate are clearer; increased sulfate reduces Indian precipitation, a consistency through all of the models studied here. For (2), we study bespoke simulations, with reduced Chinese and/or Indian emissions in three GCMs. A significant increase in precipitation (up to ~ 20 %) is found only when both countries' sulfur emissions are regulated, which has been driven in large part by dynamic shifts in the location of convective regions in India. These changes have the potential to restore a portion of the precipitation losses induced by sulfate forcing over the last few decades.
2020
Meng Gao, Zirui Liu, Bo Zheng, Dongsheng Ji, Peter Sherman, Shaojie Song, Jinyuan Xin, Cheng Liu, Yuesi Wang, Qiang Zhang, Jia Xing, Jingkun Jiang, Zifa Wang, Gregory R. Carmichael, and Michael B. McElroy. 2020. “China's emission control strategies have suppressed unfavorable influences of climate on wintertime PM2.5 concentrations in Beijing since 2002.” Atmospheric Chemistry and Physics, 20, 3, Pp. 1497-1505. Publisher's VersionAbstract
Severe wintertime PM2.5 pollution in Beijing has been receiving increasing worldwide attention, yet the decadal variations remain relatively unexplored. Combining field measurements and model simulations, we quantified the relative influences of anthropogenic emissions and meteorological conditions on PM2.5 concentrations in Beijing over the winters of 2002–2016. Between the winters of 2011 and 2016, stringent emission control measures resulted in a 21 % decrease in mean mass concentrations of PM2.5 in Beijing, with 7 fewer haze days per winter on average. Given the overestimation of PM2.5 by the model, the effectiveness of stringent emission control measures might have been slightly overstated. With fixed emissions, meteorological conditions over the study period would have led to an increase in haze in Beijing, but the strict emission control measures have suppressed the unfavorable influences of the recent climate. The unfavorable meteorological conditions are attributed to the weakening of the East Asia winter monsoon associated particularly with an increase in pressure associated with the Aleutian Low.
ACP_Full_Text

Pages