Nielsen, Chris P.

2018
Xinyu Chen, Jiajun Lv, Michael B. McElroy, Xingning Han, Chris Nielsen, and Jinyu Wen. 2018. “Power system capacity expansion under higher penetration of renewables considering flexibility constraints and low carbon policies.” IEEE Transactions on Power Systems, 33, 6, Pp. 6240-6253. Publisher's VersionAbstract
Deploying high penetration of variable renewables represents a critical pathway for deep decarbonizing the power sector. The conflict between their temporal variability and limited system flexibility has been largely ignored currently at planning stage. Here we present a novel capacity expansion model optimizing investment decisions and full-year, hourly power balances simultaneously, with considerations of storage technologies and policy constraints, such as carbon tax and renewable portfolio standards (RPS). Based on a computational efficient modeling formulation, all flexibility constrains (ramping, reserve, minimum output, minimal online/offline time) for the 8760-hour duration are incorporated. The proposed model is applied to the northwestern grid of China to examine the optimal composition and distribution of power investments with a wide range of renewable targets. Results indicate that the cost can increase moderately towards 45% of RPS, when properly designing the generation portfolio: prioritizing wind investments, distributing renewable investments more evenly and deploying more flexible mid-size coal and gas units. Reaching higher penetrations of renewables is expensive and the reductions of storage costs are critically important for an affordable low-carbon future. RPS or carbon taxes to reach a same target of emission reduction in China will result in similar overall costs but different generation mixes.
2017
Haikun Wang, Yanxu Zhang, Xi Lu, Weimo Zhu, Chris P. Nielsen, Jun Bi, and Michael B. McElroy. 2017. “Trade‐driven relocation of air pollution and health impacts in China.” Nature Communications, 8, 738. Publisher's VersionAbstract
Recent studies show that international trade affects global distributions of air pollution andpublic health. Domestic interprovincial trade has similar effects within countries, but has notbeen comprehensively investigated previously. Here we link four models to evaluate theeffects of both international exports and interprovincial trade on PM2.5pollution and publichealth across China. We show that 50–60% of China’s air pollutant emissions in 2007 wereassociated with goods and services consumed outside of the provinces where they wereproduced. Of an estimated 1.10 million premature deaths caused by PM2.5pollutionthroughout China, nearly 19% (208,500 deaths) are attributable to international exports. Incontrast, interprovincial trade leads to improved air quality in developed coastal provinceswith a net effect of 78,500 avoided deaths nationwide. However, both international exportand interprovincial trade exacerbate the health burdens of air pollution in China’s lessdeveloped interior provinces. Our results reveal trade to be a critical but largely overlookedconsideration in effective regional air quality planning for China.
2016
Yinmin Xia, Yu Zhao, and Chris P. Nielsen. 2016. “Benefits of China's efforts in gaseous pollutant control indicated by bottom-up emissions and satellite observations 2000-2014.” Atmospheric Environment, 136, July, Pp. 43-53. Publisher's VersionAbstract

To evaluate the effectiveness of national air pollution control policies, the emissions of SO2, NOX, CO and CO2 in China are estimated using bottom-up methods for the most recent 15-year period (2000–2014). Vertical column densities (VCDs) from satellite observations are used to test the temporal and spatial patterns of emissions and to explore the ambient levels of gaseous pollutants across the country. The inter-annual trends in emissions and VCDs match well except for SO2. Such comparison is improved with an optimistic assumption in emission estimation that the emission standards for given industrial sources issued after 2010 have been fully enforced. Underestimation of emission abatement and enhanced atmospheric oxidization likely contribute to the discrepancy between SO2 emissions and VCDs. As suggested by VCDs and emissions estimated under the assumption of full implementation of emission standards, the control of SO2 in the 12th Five-Year Plan period (12th FYP, 2011–2015) is estimated to be more effective than that in the 11th FYP period (2006–2010), attributed to improved use of flue gas desulfurization in the power sector and implementation of new emission standards in key industrial sources. The opposite was true for CO, as energy efficiency improved more significantly from 2005 to 2010 due to closures of small industrial plants. Iron & steel production is estimated to have had particularly strong influence on temporal and spatial patterns of CO. In contrast to fast growth before 2011 driven by increased coal consumption and limited controls, NOX emissions decreased from 2011 to 2014 due to the penetration of selective catalytic/non-catalytic reduction systems in the power sector. This led to reduced NO2 VCDs, particularly in relatively highly polluted areas such as the eastern China and Pearl River Delta regions. In developed areas, transportation is playing an increasingly important role in air pollution, as suggested by the increased ratio of NO2 to SO2 VCDs. For air quality in mega cities, the inter-annual trends in emissions and VCDs indicate that surrounding areas are more influential in NO2 level for Beijing than those for Shanghai.

Challenges faced by China compared with the US in developing wind power
Xi Lu, Michael B. McElroy, Wei Peng, Shiyang Liu, Chris P. Nielsen, and Haikun Wang. 2016. “Challenges faced by China compared with the US in developing wind power.” Nature Energy, 1, 6. Publisher's VersionAbstract

In the 21st Conference of the Parties to the UNFCCC held in Paris in December 2015, China pledged to peak its carbon emissions and increase non-fossil energy to 20% by 2030 or earlier. Expanding renewable capacity, especially wind power, is a central strategy to achieve these climate goals. Despite greater capacity for wind installation in China compared to the US (145.1 versus 75.0 GW), less wind electricity is generated in China (186.3 versus 190.9 TWh). Here, we quantify the relative importance of the key factors accounting for the unsatisfactory performance of Chinese wind farms. Different from the results in earlier qualitative studies, we find that the difference in wind resources explains only a small fraction of the present China-US difference in wind power output (17.9% in 2012); the curtailment of wind power, differences in turbine quality, and delayed connection to the grid are identified as the three primary factors (respectively 49.3%, 50.2%, and 50.3% in 2012). Improvements in both technology choices and the policy environment are critical in addressing these challenges. 

Final Manuscript in DASH
Lu et al. is the cover article of this issue of Nature Energy. It is also subject of a "News and Views" commentary in the same issue, by Joanna I. Lewis.

Rong Xie, Clive E. Sabel, Xi Lu, Weimo Zhu, Haidong Kan, Chris P. Nielsen, and Haikun Wang. 2016. “Long-term trend and spatial pattern of PM2.5-induced premature mortality in China.” Environment International, 97, Pp. 180-186. Publisher's VersionAbstract

With rapid economic growth, China has witnessed increasingly frequent and severe haze and smog episodes over the past decade, posing serious health impacts to the Chinese population, especially those in densely populated city clusters. Quantification of the spatial and temporal variation of health impacts attributable to ambient fine particulate matter (PM2.5) has important implications for China's policies on air pollution control. In this study, we evaluated the spatial distribution of premature deaths in China between 2000 and 2010 attributable to ambient PM2.5 in accord with the Global Burden of Disease based on a high resolution population density map of China, satellite retrieved PM2.5 concentrations, and provincial health data. Our results suggest that China's anthropogenic ambient PM2.5 led to 1,255,400 premature deaths in 2010, 42% higher than the level in 2000. Besides increased PM2.5 concentration, rapid urbanization has attracted large population migration into the more developed eastern coastal urban areas, intensifying the overall health impact. In addition, our analysis implies that health burdens were exacerbated in some developing inner provinces with high population density (e.g. Henan, Anhui, Sichuan) because of the relocation of more polluting and resource-intensive industries into these regions. In order to avoid such national level environmental inequities, China's regulations on PM2.5 should not be loosened in inner provinces. Furthermore policies should create incentive mechanisms that can promote transfer of advanced production and emissions control technologies from the coastal regions to the interior regions.

Meiyu Guo, Xi Lu, Chris P. Nielsen, Michael B. McElroy, Wenrui Shi, Yuntian Chen, and Xuan Yu. 2016. “Prospects for shale gas production in China: Implications for water demand.” Renewable and Sustainable Energy Reviews, 66, December, Pp. 742-750. Publisher's VersionAbstract

Development of shale gas resources is expected to play an important role in China's projected transition to a low-carbon energy future. The question arises whether the availability of water could limit this development. The paper considers a range of scenarios to define the demand for water needed to accommodate China's projected shale gas production through 2020. Based on data from the gas field at Fuling, the first large-scale shale gas field in China, it is concluded that the water intensity for shale gas development in China (water demand per unit lateral length) is likely to exceed that in the US by about 50%. Fuling field would require a total of 39.9–132.9 Mm3 of water to achieve full development of its shale gas, with well spacing assumed to vary between 300 and 1000 m. To achieve the 2020 production goal set by Sinopec, the key Chinese developer, water consumption is projected to peak at 7.22 Mm3 in 2018. Maximum water consumption would account for 1% and 3%, respectively, of the available water resource and annual water use in the Fuling district. To achieve China's nationwide shale gas production goal set for 2020, water consumption is projected to peak at 15.03 Mm3 in 2019 in a high-use scenario. It is concluded that supplies of water are adequate to meet demand in Fuling and most projected shale plays in China, with the exception of localized regions in the Tarim and Jungger Basins.

Ning Zhang, Xi Lu, Chris P Nielsen, Michael B. McElroy, Xinyu Chen, Yu Deng, and Chongqing Kang. 2016. “Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage.” Applied Energy, 184, Pp. 987-994. Publisher's VersionAbstract

Accommodating variable wind power poses a critical challenge for electric power systems that are heavily dependent on combined heat and power (CHP) plants, as is the case for north China. An improved unit-commitment model is applied to evaluate potential benefits from pumped hydro storage (PHS) and electric boilers (EBs) in West Inner Mongolia (WIM), where CHP capacity is projected to increase to 33.8 GW by 2020. A business-as-usual (BAU) reference case assumes deployment of 20 GW of wind capacity. Compared to BAU, expanding wind capacity to 40 GW would allow for a reduction in CO2 emissions of 33.9 million tons, but at a relatively high cost of US$25.3/ton, reflecting primarily high associated curtailment of wind electricity (20.4%). A number of scenarios adding PHS and/or EBs combined with higher levels of wind capacity are evaluated. The best case indicates that a combination of PHS (3.6 GW) and EBs (6.2 GW) together with 40 GW of wind capacity would reduce CO2 emissions by 43.5 million tons compared to BAU, and at a lower cost of US$16.0/ton. Achieving this outcome will require a price-incentive policy designed to ensure the profitability of both PHS and EB facilities.

2015
Y. Zhao, LP Qiu, RY Xu, FJ Xie, Q. Zhang, YY Yu, C.P. Nielsen, HX Qin, H.K. Wang, XC Wu, WQ Li, and J. Zhang. 2015. “Advantages of city-scale emission inventory for urban air quality research and policy: the case of Nanjing, a typical industrial city in the Yangtze River Delta, China.” Atmospheric Chemistry and Physics, 15, Pp. 12623-12644. Publisher's VersionAbstract

With most eastern Chinese cities facing major air quality challenges, there is a strong need for city-scale emission inventories for use in both chemical transport modeling and the development of pollution control policies. In this paper, a high-resolution emission inventory of air pollutants and CO2 for Nanjing, a typical large city in the Yangtze River Delta, is developed incorporating the best available information on local sources. Emission factors and activity data at the unit or facility level are collected and compiled using a thorough onsite survey of major sources. Over 900 individual plants, which account for 97% of the city's total coal consumption, are identified as point sources, and all of the emission-related parameters including combustion technology, fuel quality, and removal efficiency of air pollution control devices (APCD) are analyzed. New data-collection approaches including continuous emission monitoring systems and real-time monitoring of traffic flows are employed to improve spatiotemporal distribution of emissions. Despite fast growth of energy consumption between 2010 and 2012, relatively small inter-annual changes in emissions are found for most air pollutants during this period, attributed mainly to benefits of growing APCD deployment and the comparatively strong and improving regulatory oversight of the large point sources that dominate the levels and spatial distributions of Nanjing emissions overall. The improvement of this city-level emission inventory is indicated by comparisons with observations and other inventories at larger spatial scale. Relatively good spatial correlations are found for SO2, NOX, and CO between the city-scale emission estimates and concentrations at 9 state-opertated monitoring sites (R = 0.58, 0.46, and 0.61, respectively). The emission ratios of specific pollutants including BC to CO, OC to EC, and CO2 to CO compare well to top-down constraints from ground observations. The inter-annual variability and spatial distribution of NOX emissions are consistent with NO2 vertical column density measured by the Ozone Monitoring Instrument (OMI). In particular, the Nanjing city-scale emission inventory correlates better with satellite observations than the downscaled Multi-resolution Emission Inventory for China (MEIC) does when emissions from power plants are excluded. This indicates improvement in emission estimation for sectors other than power generation, notably industry and transportation. High-resolution emission inventory may also provide a basis to consider the quality of instrumental observations. To further improve emission estimation and evaluation, more measurements of both emission factors and ambient levels of given pollutants are suggested; the uncertainties of emission inventories at city scale should also be fully quantified and compared with those at national scale. 


Yu Zhao, Hui Zhong, Jie Zhang, and Chris P Nielsen. 2015. “Evaluating the effects of China's pollution control on inter-annual trends and uncertainties of atmospheric mercury emissions.” Atmospheric Chemistry and Physics, 15, Pp. 4317–4337. Publisher's VersionAbstract
China's atmospheric mercury (Hg) emissions of anthropogenic origin have been effectively restrained through the national policy of air pollution control. Improved methods based on available field measurements are developed to quantify the benefits of Hg abatement through various emission control measures. Those measures include increased use of flue gas desulfurization (FGD) and selective catalyst reduction (SCR) systems for power sector, precalciners with fabric filter (FF) for cement production, machinery coking with electrostatic precipitator (ESP) for iron and steel production, and advanced manufacturing technologies for nonferrous metal smelting. Declining trends in emissions factors for those sources are revealed, leading to a much slower growth of national total Hg emissions than that of energy and economy, from 679 in 2005 to 750 metric tons (t) in 2012. In particular, nearly half of emissions from the above-mentioned four types of sources are expected to be reduced in 2012, attributed to expansion of technologies with high energy efficiencies and air pollutant removal rates after 2005. The speciation of Hg emissions keeps stable for recent years, with the mass fractions of around 55, 39 and 6% for Hg0, Hg2+ and Hgp, respectively. The lower estimate of Hg emissions than previous inventories is supported by limited chemistry simulation work, but middle-to-long term observation on ambient Hg levels is further needed to justify the inter-annual trends of estimated Hg emissions. With improved implementation of emission controls and energy saving, 23% reduction in annual Hg emissions for the most optimistic case in 2030 is expected compared to 2012, with total emissions below 600 t. While Hg emissions are evaluated to be gradually constrained, increased uncertainties are quantified with Monte-Carlo simulation for recent years, particularly for power and certain industrial sources. The uncertainty of Hg emissions from coal-fired power plants, as an example, increased from −48 ~ +73% in 2005 to −50 ~ +89% in 2012 (expressed as 95% confidence interval). This is attributed mainly to swiftly increased penetration of advanced manufacturing and pollutant control technologies. The unclear operation status or relatively small sample size of field measurements on those technologies results in lower but highly varied emission factors. To further confirm the benefits of pollution control polices with reduced uncertainty, therefore, systematic investigations are recommended specific for Hg pollution sources, and the variability of temporal trends and spatial distributions of Hg emissions need to be better tracked for the country under dramatic changes in economy, energy and air pollution status.
Hongfei Cui, Pan Mao, Yu Zhao, Chris P Nielsen, and Jie Zhang. 2015. “Patterns in atmospheric carbonaceous aerosols in China: Emission estimates and observed concentrations.” Atmospheric Chemistry and Physics, 15, Pp. 8657–8678. Publisher's VersionAbstract

 

China is experiencing severe carbonaceous aerosol pollution driven mainly by large emissions from intensive use of solid fuels. To gain a better understanding of the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations at the national scale, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC), and employ existing observational studies to analyze characteristics of these aerosols including temporal, spatial, and size distributions, and the levels and contributions of secondary organic carbon (SOC) to total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols, and propose possible improvements in emission estimation for the future. The national OC emissions are estimated to have increased 29% from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37% (from 1356 to 1857 Gg). The residential, industrial, and transportation sectors contributed an estimated 76±2%, 19±2% and 5±1% of the total emissions of OC, respectively, and 52±3%, 32±2% and 16±2% of EC. Updated emission factors based on the most recent local field measurements, particularly for biofuel stoves, lead to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while larger OC/EC and SOC/OC ratios are found in southern cities, due to the joint effects of primary emissions and meteorology. Higher SOC/OC ratios are estimated at rural and background sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, higher concentrations of OC, EC, and SOC are observed in colder seasons, while SOC/OC is reduced, particularly at regional sites, attributed partly to weaker atmospheric oxidation and SOC formation compared to summer. Enhanced SOC formation from oxidization and anthropogenic activities like biomass combustion is judged to have crucial effects on severe haze events characterized by high particle concentrations. Several observational studies indicate an increasing trend in ambient OC/EC (but not in OC or EC individually) from 2000 to 2010, confirming increased atmospheric oxidation of OC across the country. Combining the results of emission estimation and observations, the improvement over prior emission inventories is indicated by inter-annual comparisons and correlation analysis. It is also indicated, however, that the estimated growth in emissions might be faster than observed growth, and that some sources with high primary OC/EC like burning of biomass are still underestimated. Further studies to determine changing emission factors over time in the residential sector and to compare to other measurements such as satellite observations are thus suggested to improve understanding of the levels and trends of primary carbonaceous aerosol emissions in China.

Yu Deng, Shenghe Liu, Jianming Cai, Xi Lu, and Chris P Nielsen. 2015. “Spatial pattern and evolution of Chinese provincial population: Methods and empirical study.” Journal of Geographical Sciences, 25, 12, Pp. 1507-1520. Publisher's VersionAbstract

China has been experiencing an unprecedented urbanization process. In 2011, China’s urban population reached 691 million with an urbanization rate of 51.27%. Urbanization level is expected to increase to 70% in China in 2030, reflecting the projection that nearly 300 million people would migrate from rural areas to urban areas over this period. At the same time, the total fertility rate of China’s population is declining due to the combined effect of economic growth, environmental carrying capacity, and modern social consciousness. The Chinese government has loosened its “one-child policy” gradually by allowing childbearing couples to have the second child as long as either of them is from a one-child family. In such rapidly developing country, the natural growth and spatial migration will consistently reshape spatial pattern of population. An accurate prediction of the future spatial pattern of population and its evolution trend are critical to key policy-making processes and spatial planning in China including urbanization, land use development, ecological conservation and environmental protection. In this paper, a top-down method is developed to project the spatial distribution of China’s future population with considerations of both natural population growth at provincial level and the provincial migration from 2010 to 2050. Building on this, the spatial pattern and evolution trend of Chinese provincial population are analyzed. The results suggested that the overall spatial pattern of Chinese population will be unlikely changed in next four decades, with the east area having the highest population density and followed by central area, northeast and west area. Four provinces in the east, Shanghai, Beijing, Tianjin and Jiangsu, will remain the top in terms of population density in China, and Xinjiang, Qinghai and Tibet will continue to have the lowest density of population. We introduced an index system to classify the Chinese provinces into three categories in terms of provincial population densities: Fast Changing Populated Region (FCPR), Low Changing Populated Region (LCPR) and Inactive Populated Region (IPR). In the FCPR, China’s population is projected to continue to concentrate in net immigration leading type (NILT) area where receives nearly 99% of new accumulated floating population. Population densities of Shanghai, Beijing, Zhejiang will peak in 2030, while the population density in Guangdong will keep increasing until 2035. Net emigration leading type (NELT) area will account for 75% of emigration population, including Henan, Anhui, Chongqing and Hubei. Natural growth will play a dominant role in natural growth leading type area, such as Liaoning and Shandong, because there will be few emigration population. Due to the large amount of moving-out labors and gradually declining fertility rates, population density of the LCPR region exhibits a downward trend, except for Fujian and Hainan. The majority of the western provinces will be likely to remain relatively low population density, with an average value of no more than 100 persons per km2.

Haikun Wang, Yanxia Zhang, Xi Lu, Chris P Nielsen, and Jun Bi. 2015. “Understanding China's carbon dioxide emissions from both production and consumption perspectives.” Renewable and Sustainable Energy Reviews, 52, Pp. 189-200. Publisher's VersionAbstract

China is now the largest emitter of CO2 in the world, having contributed nearly half of the global increase in carbon emissions between 1980 and 2010. The existing literature on China’s carbon emissions has focused on two dimensions: the amount of CO2 emitted within China’s geographical boundaries (a production-based perspective), and the drivers of, and responsibility for, these emissions (a consumption-based perspective). The current study begins with a comprehensive review of China’s CO2 emissions, and then analyzes their driving forces from both consumption and production perspectives, at both national and provincial levels. It is concluded that China’s aggregate national CO2 emissions from fossil fuel consumption and cement production maintained high growth rates during 2000-2010. National emissions reached 6.8–7.3 billion tons in 2007, nearly 25% of which were caused by net exports (i.e., exports minus imports) to other countries. However, emission characteristics varied significantly among different regions and provinces, and considerable emission leakage from the developed eastern regions to inland and western areas of the country was found. The objectives of China’s policies should therefore be broadened from continued improvement of energy efficiency to accelerating regional technology transfer and preventing mere relocation of carbon-intensive economic activities from developed coastal regions to less developed, inland provinces. To rapidly and effectively cut down China’s carbon emissions, moreover, its energy supply should be aggressively decarbonized by promoting renewable and low carbon energy sources.

2014
Yu Zhao, Jie Zhang, and Chris P Nielsen. 2014. “The effects of energy paths and emission controls and standards on future trends in China's emissions of primary air pollutants.” Atmospheric Chemistry and Physics, 14, Pp. 8849-8868. Publisher's VersionAbstract
To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total suspended particles (TSP), PM10, and PM2.5 are estimated to decline 7, 20, 41, 34, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17 (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12 and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby concentrations of negative-forcing sulfate particles. Expanded control of emissions of fine particles and carbonaceous aerosols from small industrial and residential sources is recommended, and a more comprehensive emission control strategy targeting a wider range of pollutants (volatile organic compounds, NH3 and CO, etc.) and taking account of more diverse environmental impacts is also urgently needed.
S.X. Wang, B. Zhao, S.Y. Cai, Z. Klimont, C.P. Nielsen, T. Morikawa, J.H. Woo, Y. Kim, X. Fu, J.Y. Xu, J.M. Hao, and K.B. He. 2014. “Emission trends and mitigation options for air pollutants in East Asia.” Atmospheric Chemistry and Physics, 14, Pp. 6571-6603. Publisher's VersionAbstract

Emissions of air pollutants in East Asia play an important role in the regional and global atmospheric environment. In this study we evaluated the recent emission trends of sulfur dioxide (SO2), nitrogen oxides (NOx), particulate matter (PM), and non-methane volatile organic compounds (NMVOC) in East Asia, and projected their future emissions up until 2030 with six emission scenarios. The results will provide future emission projections for the modeling community of the model inter-comparison program for Asia (MICS-Asia). During 2005–2010, the emissions of SO2 and PM2.5 in East Asia decreased by 15 and 12%, respectively, mainly attributable to the large-scale deployment of flue gas desulfurization (FGD) at China's power plants, and the promotion of highly efficient PM removal technologies in China's power plants and cement industry. During this period, the emissions of NOx and NMVOC increased by 25 and 15%, driven by rapid increase in the emissions from China due to inadequate control strategies. In contrast, the NOx and NMVOC emissions in East Asia except China decreased by 13–17%, mainly due to the implementation of stringent vehicle emission standards in Japan and South Korea. Under current regulations and current levels of implementation, NOx, SO2, and NMVOC emissions in East Asia are projected to increase by about one-quarter over 2010 levels by 2030, while PM2.5 emissions are expected to decrease by 7%. Assuming enforcement of new energy-saving policies, emissions of NOx, SO2, PM2.5 and NMVOC in East Asia are expected to decrease by 28, 36, 28, and 15%, respectively, compared with the baseline case. The implementation of "progressive" end-of-pipe control measures would lead to another one-third reduction of the baseline emissions of NOx, and about one-quarter reduction of SO2, PM2.5, and NMVOC. Assuming the full application of technically feasible energy-saving policies and end-of-pipe control technologies, the emissions of NOx, SO2, and PM2.5 in East Asia would account for only about one-quarter, and NMVOC for one-third, of the levels of the baseline projection. Compared with previous projections, this study projects larger reductions in NOx and SO2 emissions by considering aggressive governmental plans and standards scheduled to be implemented in the next decade, and quantifies the significant effects of detailed progressive control measures on NMVOC emissions up until 2030.

Long Wang, Shuxiao Wang, Lei Zheng, Yuxuan Wang, Yanxu Zheng, Chris P Nielsen, Michael B. McElroy, and Jiming Hao. 2014. “Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model.” Environmental Pollution, 190, July, Pp. 166-175. Publisher's VersionAbstract

China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. In this study, China's Hg emission inventory is updated to 2007 and applied in the GEOS-Chem model to simulate the Hg concentrations and depositions in China. Results indicate that simulations agree well with observed background Hg concentrations. The anthropogenic sources contributed 35–50% of THg concentration and 50–70% of total deposition in polluted regions. Sensitivity analysis was performed to assess the impacts of mercury emissions from power plants, non-ferrous metal smelters and cement plants. It is found that power plants are the most important emission sources in the North China, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) while the contribution of non-ferrous metal smelters is most significant in the Southwest China. The impacts of cement plants are significant in the YRD, PRD and Central China.

Xinyu Chen, Xi Lu, Michael B. McElroy, Chris P Nielsen, and Chongqing Kang. 2014. “Synergies of wind power and electrified space heating: A case study for Beijing.” Environmental Science & Technology, 48, 3, Pp. 2016–2024. Publisher's VersionAbstract

Demands for electricity and energy to supply heat are expected to expand by 71% and 47%, respectively, for Beijing in 2020 relative to 2009. If the additional electricity and heat are supplied solely by coal as is the current situation, annual emissions of CO2 may be expected to increase by 59.6% or 99 million tons over this interval. Assessed against this business as usual (BAU) background, the present study indicates that significant reductions in emissions could be realized using wind-generated electricity to provide a source of heat, employed either with heat pumps or with electric thermal storage (ETS) devices. Relative to BAU, reductions in CO2 with heat pumps assuming 20% wind penetration could be as large as 48.5% and could be obtained at a cost for abatement of as little as $15.6 per ton of avoided CO2. Even greater reductions, 64.5%, could be realized at a wind penetration level of 40% but at a higher cost, $29.4 per ton. Costs for reduction of CO2 using ETS systems are significantly higher, reflecting the relatively low efficiency for conversion of coal to power to heat.

Yanxia Zhang, Haikun Wang, Sai Liang, Ming Xu, Weidong Liu, Shalang Li, Rongrong Zhang, Chris P Nielsen, and Jun Bi. 2014. “Temporal and spatial variations in consumption-based carbon dioxide emissions in China.” Renewable & Sustainable Energy Reviews, 40, Pp. 60-68. Publisher's VersionAbstract

China’s CO2 emissions have sharply increased in recent years with soaring economic development and urbanization. Consumption-based accounting of CO2 emissions could provide new insights for allocating regional mitigation responsibility and curbing the emissions. A multi-regional input–output model is used to study the trends and disparities of consumption-based emissions from Chinese provinces during the period 2002–2007. Results show that China’s consumption-based CO2 emissions grew from 3549 Mt in 2002 to 5403 Mt in 2007 with an annual average growth rate of 8.8%. The annual growth rate in the richer eastern region was over 10% because of a rapid increase in capital investment and the growth of urban consumption. Consumption-based CO2 emissions embodied in interprovincial trades contributed only 10% (351 Mt) to the national total of such emissions in 2002, but 16% (864 Mt) in 2007. Given low per capita emissions currently, China’s consumption-based emissions have much room to grow because of further development of urbanization and stimulation of domestic demand. The government should pay greater attention to controlling CO2 emissions from a consumption-based perspective.

2013
Chris P Nielsen and Mun S Ho. 2013. “Atmospheric Environment in China: Introduction and Research Review.” In Clearer Skies Over China: Reconciling Air Quality, Climate, and Economic Goals, Pp. 3-58. Cambridge, MA: MIT Press. Publisher's VersionAbstract

A groundbreaking U.S.–Chinese inquiry into the effects of recent air pollution controls and prospective carbon taxes on China's economy and environment.

China's carbon dioxide emissions now outstrip those of other countries and its domestic air quality is severely degraded, especially in urban areas. Its sheer size and its growing, fossil-fuel-powered economy mean that China's economic and environmental policy choices will have an outsized effect on the global environmental future. Over the last decade, China has pursued policies that target both fossil fuel use and atmospheric emissions, but these efforts have been substantially overwhelmed by the country's increasing energy demands. With a billion citizens still living on less than $4,000 per year, China's energy and environmental policies must be reconciled with the goals of maintaining economic growth and raising living standards.

This book, a U.S.–Chinese collaboration of experts from Harvard and Tsinghua University, offers a groundbreaking integrated analysis of China's economy, emissions, air quality, public health, and agriculture. It first offers essential scientific context and accessible summaries of the book's policy findings; it then provides the underlying scientific and economic research. These studies suggest that China's recent sulfur controls achieved enormous environmental health benefits at unexpectedly low costs. They also indicate that judicious implementation of carbon taxes could reduce not only China's carbon emissions but also its air pollution more comprehensively than current single-pollutant policies, all at little cost to economic growth.

Clearer Skies Over China: Reconciling Air Pollution, Climate, and Economic Goals
2013. Clearer Skies Over China: Reconciling Air Pollution, Climate, and Economic Goals. Cambridge, MA: MIT Press. Publisher's VersionAbstract

A groundbreaking U.S.–Chinese inquiry into the effects of recent air pollution controls and prospective carbon taxes on China's economy and environment.

China's carbon dioxide emissions now outstrip those of other countries and its domestic air quality is severely degraded, especially in urban areas. Its sheer size and its growing, fossil-fuel-powered economy mean that China's economic and environmental policy choices will have an outsized effect on the global environmental future. Over the last decade, China has pursued policies that target both fossil fuel use and atmospheric emissions, but these efforts have been substantially overwhelmed by the country's increasing energy demands. With a billion citizens still living on less than $4,000 per year, China's energy and environmental policies must be reconciled with the goals of maintaining economic growth and raising living standards.

This book, a U.S.–Chinese collaboration of experts from Harvard and Tsinghua University, offers a groundbreaking integrated analysis of China's economy, emissions, air quality, public health, and agriculture. It first offers essential scientific context and accessible summaries of the book's policy findings; it then provides the underlying scientific and economic research. These studies suggest that China's recent sulfur controls achieved enormous environmental health benefits at unexpectedly low costs. They also indicate that judicious implementation of carbon taxes could reduce not only China's carbon emissions but also its air pollution more comprehensively than current single-pollutant policies, all at little cost to economic growth.

Yu Zhao, Jie Zhang, and Chris P Nielsen. 2013. “The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO2 in China.” Atmospheric Chemistry and Physics, 13, Pp. 487-508. Publisher's VersionAbstract

To examine the effects of China’s national policies of energy conservation and emission control during 2005–2010, inter-annual emission trends of gaseous pollutants, primary aerosols, and CO2 are estimated with a bottom-up framework. The control measures led to improved energy efficiency and/or increased penetration of emission control devices at power plants and other important industrial sources, yielding reduced emission factors for all evaluated species except NOx. The national emissions of anthropogenic SO2, CO, and total primary PM (particulate matter) in 2010 are estimated to have been 89%, 108%, and 87% of those in 2005, respectively, suggesting successful emission control of those species despite fast growth of the economy and energy consumption during the period. The emissions of NOx and CO2, however, are estimated to have increased by 47% and 43%, respectively, indicating that they remain largely determined by the growth of energy use, industrial production, and vehicle populations. Based on application of a Monte-Carlo framework, estimated uncertainties of SO2 and PM emissions increased from 2005 to 2010, resulting mainly from poorly understood average SO2 removal efficiency in flue gas desulfurization (FGD) systems in the power sector, and unclear changes in the penetration levels of dust collectors at industrial sources, respectively. While emission trends determined by bottom-up methods can be generally verified by observations from both ground stations and satellites, clear discrepancies exist for given regions and seasons, indicating a need for more accurate spatial and time distributions of emissions. Limitations of current emission control polices are analyzed based on the estimated emission trends. Compared with control of total PM, there are fewer gains in control of fine particles and carbonaceous aerosols, the PM components most responsible for damages to public health and effects on radiative forcing. A much faster decrease of alkaline base cations in primary PM than that of SO2 may have raised the acidification risks to ecosystems, indicating further control of acid precursors is required. Moreover, with relatively strict controls in developed urban areas, air pollution challenges have been expanding to less-developed neighboring regions. There is a great need in the future for multipollutant control strategies that combine recognition of diverse environmental impacts both in urban and rural areas with emission abatement of multiple species in concert. To examine the effects of China’s national policies of energy conservation and emission control during 2005–2010, inter-annual emission trends of gaseous pollutants, primary aerosols, and CO2 are estimated with a bottom-up framework. The control measures led to improved energy efficiency and/or increased penetration of emission control devices at power plants and other important industrial sources, yielding reduced emission factors for all evaluated species except NOx. The national emissions of anthropogenic SO2, CO, and total primary PM (particulate matter) in 2010 are estimated to have been 89%, 108%, and 87% of those in 2005, respectively, suggesting successful emission control of those species despite fast growth of the economy and energy consumption during the period. The emissions of NOx and CO2, however, are estimated to have increased by 47% and 43%, respectively, indicating that they remain largely determined by the growth of energy use, industrial production, and vehicle populations. Based on application of a Monte-Carlo framework, estimated uncertainties of SO2 and PM emissions increased from 2005 to 2010, resulting mainly from poorly understood average SO2 removal efficiency in flue gas desulfurization (FGD) systems in the power sector, and unclear changes in the penetration levels of dust collectors at industrial sources, respectively. While emission trends determined by bottom-up methods can be generally verified by observations from both ground stations and satellites, clear discrepancies exist for given regions and seasons, indicating a need for more accurate spatial and time distributions of emissions. Limitations of current emission control polices are analyzed based on the estimated emission trends. Compared with control of total PM, there are fewer gains in control of fine particles and carbonaceous aerosols, the PM components most responsible for damages to public health and effects on radiative forcing. A much faster decrease of alkaline base cations in primary PM than that of SO2 may have raised the acidification risks to ecosystems, indicating further control of acid precursors is required. Moreover, with relatively strict controls in developed urban areas, air pollution challenges have been expanding to less-developed neighboring regions. There is a great need in the future for multipollutant control strategies that combine recognition of diverse environmental impacts both in urban and rural areas with emission abatement of multiple species in concert.

Pages