Yang, Qing

Submitted
Xinyu Chen, Junling Huang, Qing Yang, Chris P. Nielsen, Dongbo Shi, and Michael B. McElroy. Submitted. “Changing carbon content of Chinese coal and implications for emissions of CO2.” Journal of Cleaner Production.
Xi Lu, Liang Cao, Haikun Wang, Wei Peng, Jia Xing, Shuxiao Wang, Siyi Cai, Bo Shen, Qing Yang, Chris P. Nielsen, and Michael B. McElroy. Submitted. “Gasification of coal and biomass: a net negative-carbon power source for environmental friendly electricity generation in China.” Proceedings of the National Academy of Sciences.
X.D. Wu, Q. Yang, G.Q. Chen, T. Hayat, and A. Alsaedi. Submitted. “Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2x600 MW retrofitted oxyfuel power plant as a case study.” Renewable and Sustainable Energy Reviews.
Qing Yang, Xiaoyan Zhang, Hewen Zhou, Chris P Nielsen, Jiashuo Li, Xi Lu, Haiping Yang, and Hanping Chen. Submitted. “A system analysis of energy consumption and greenhouse gas emissions of a biomass gasification power plant in China.” Journal of Cleaner Production.
2016
Yanyang Mei, Qingfeng Che, Qing Yang, Christopher Draper, Haiping Yang, Shihong Zhang, and Hanping Chen. 2016. “Torrefaction of different parts from a corn stalk and its effect on the characterization of products.” Industrial Crops and Products, 92, 15 December, Pp. 26-33. Publisher's VersionAbstract

Torrefaction of biomass can reduce its undesirable properties for the subsequent thermochemical application. After separating a Chinese corn stalk into four parts (leaf, stem, root, and cob), torrefaction was performed at temperatures of 200, 250, and 300 °C respectively. The structural and components differences of various parts were analyzed, along with the solid, gas, and liquid products. The study showed that the root was the most sensitive to heat and the cob showed the biggest increase in CO2 and CO yields with the increase temperature, due to their different content of hemicellulose and cellulose. The torrefaction temperature of 250 °C was especially significant for the formation of acids. Liquid product from the leaf was simpler in composition and lower in yield due to higher content of organic extractives and ash. Generally, various parts have different torrefaction properties due to the differences in chemical composition and cellular structure. And with the thermochemical application of biomass were more widely used in the chemical industry especially fine chemical industry, screening and classification may be necessary.