Air Pollution, Greenhouse Gases & Climate

In Press
Haikun Wang, Yaoguang Sun, Xi Lu, Yu Deng, Chris P. Nielsen, Ge Zhu, Maoliang Bu, Jun Bi, and Michael B. McElroy. In Press. “China’s CO2 peak before 2030 implied from diverse characteristics and growth of cities.” Nature Sustainability.
Meng Gao, Peter Sherman, Shaojie Song, Yueyue Yu, Zhiwei Wu, and Michael B. McElroy. In Press. “Seasonal Prediction of Indian Wintertime Aerosol Pollution using the Ocean Memory Effect.” Science Advances.
Submitted
Meng Gao, Zirui Liu, Bo Zheng, Dongsheng Ji, Peter Sherman, Shaojie Song, Jinyuan Xin, Cheng Liu, Yuesi Wang, Qiang Zhang, Zifa Wang, Gregory R. Carmichael, and Michael B. McElroy. Submitted. “China's Clean Air Action has suppressed unfavorable influences of climate on wintertime PM2.5 concentrations in Beijing since 2002.” Atmospheric Chemistry and Physics.
Archana Dayalu, J. William Munger, Yuxuan Wang, Steven C. Wofsy, Yu Zhao, Thomas Nehrkorn, Chris P. Nielsen, Michael B. McElroy, and Rachel Y.-W. Chang. Submitted. “Carbon dioxide emissions in northern China based on atmospheric observations from 2005 to 2009.” Atmospheric Chemistry and Physics.
Peter Sherman, Meng Gao, Shaojie Song, Patrick Ohiomoba, Alex Archibald, and Michael B. McElroy. Submitted. “The influence of dynamics and emissions changes on China’s wintertime haze.” Journal of Applied Meteorology and Climatology.
Xueli Zhao, Rong Ma, Xiaofang Wu, Chenghe Guan, Chris P. Nielsen, and Bo Zhang. Submitted. “Linking Agricultural GHG Emissions to Global Trade Network.” Environmental Science & Technology.
2019
Yan Zhang, Xin Bo, Yu Zhao, and Chris P. Nielsen. 2019. “Benefits of current and future policies on emissions of China's coal-fired power sector indicated by continuous emission monitoring.” Environmental Pollution, 251, Pp. 415-424. Publisher's VersionAbstract
Emission inventories are critical to understanding the sources of air pollutants, but have high uncertainties in China due in part to insufficient on-site measurements. In this study, we developed a method of examining, screening and applying online data from the country's improving continuous emission monitoring systems (CEMS) to reevaluate a “bottom-up” emission inventory of China's coal-fired power sector. The benefits of China's current national emission standards and ultra-low emission policy for the sector were quantified assuming their full implementation. The derived national average emission factors of SO2, NOx and particulate matter (PM) were 1.00, 1.00 and 0.25 kg/t-coal respectively for 2015 based on CEMS data, smaller than those of previous studies that may not fully recognize improved emission controls in recent years. The annual emissions of SO2, NOx and PM from the sector were recalculated at 1321, 1430 and 334 Gg respectively, 75%, 63% and 76% smaller than our estimates based on a previous approach without the benefit of CEMS data. The results imply that online measurement with proper data screening can better track the recent progress of emission controls. The emission intensity (the ratio of emissions to economic output) of Northwest China was larger than that of other regions, attributed mainly to its less intensive economy and industry. Transmission of electricity to more-developed eastern provinces raised the energy consumption and emissions of less-developed regions. Judged by 95 percentiles of flue-gas concentrations measured by CEMS, most power plants met the current national emission standards in 2015 except for those in Northwest and Northeast China, while plants that met the ultra-low emission policy were much scarcer. National SO2, NOx and PM emissions would further decline by 68%, 55% and 81% respectively if the ultra-low emission policy can be strictly implemented, implying the great potential of the policy for emission abatement.
Peng Jiang, Hongyan Liu, Shilong Piao, Philippe Ciais, Xiuchen Wu, Yi Yin, and Hongya Wang. 2019. “Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests.” Nature Communications, 10, 195. Publisher's VersionAbstract
While many studies have reported that drought events have substantial negative legacy effects on forest growth, it remains unclear whether wetness events conversely have positive growth legacy effects. Here, we report pervasive and substantial growth enhancement after extreme wetness by examining tree radial growth at 1929 forest sites, satellite-derived vegetation greenness, and land surface model simulations. Enhanced growth after extreme wetness lasts for 1 to 5 years and compensates for 93 ± 8% of the growth deficit after extreme drought across global water-limited regions. Remarkable wetness-enhanced growths are observed in dry forests and gymnosperms, whereas the enhanced growths after extreme wetness are much smaller in wet forests and angiosperms. Limited or no enhanced growths are simulated by the land surface models after extreme wetness. These findings provide new evidence for improving climate-vegetation models to include the legacy effects of both drought and wet climate extremes.
S.J. Song, M. Gao, W.Q. Xu, Y.L. Sun, D.R. Worsnop, J.T. Jayne, Y.Z. Zhang, L. Zhu, M. Li, Z. Zhou, C.L. Cheng, Y.B. Lv, Y. Wang, W. Peng, X.B. Xu, N. Lin, Y.X. Wang, S.X. Wang, J. W. Munger, D. Jacob, and M.B. McElroy. 2019. “Possible heterogeneous hydroxymethanesulfonate (HMS) chemistry in northern China winter haze and implications for rapid sulfate formation.” Atmospheric Chemistry and Physics, 19, Pp. 1357-1371. Publisher's Version
2018
Archana Dayalu, William Munger, Steven Wofsy, Yuxuan Wang, Thomas Nehrkorn, Yu Zhao, Michael McElroy, Chris Nielsen, and Kristina Luus. 2018. “Assessing biotic contributions to CO2 fluxes in northern China using the Vegetation, Photosynthesis and Respiration Model (VPRM-CHINA) and observations from 2005 to 2009.” Biogeosciences, 15, Pp. 6713-6729. Publisher's Version
Bo Zhang, Xueli Zhao, Xiaofang Wu, Mengyao Han, Chenghe Guan, and Shaojie Song. 2018. “Consumption‐based accounting of global anthropogenic CH4 emissions.” Earth's Future, 6, 9, Pp. 1349-1363. Publisher's VersionAbstract

Global anthropogenic CH4 emissions have witnessed a rapid increase in the last decade. However, how this increase is connected with its socioeconomic drivers has not yet been explored. In this paper, we highlight the impacts of final demand and international trade on global anthropogenic CH4 emissions based on the consumption‐based accounting principle. We find that household consumption was the largest final demand category, followed by fixed capital formation and government consumption. The position and function of nations and major economies to act on the structure and spatial patterns of global CH4 emissions were systematically clarified. Substantial geographic shifts of CH4emissions during 2000‐2012 revealed the prominent impact of international trade. In 2012, about half of global CH4 emissions were embodied in international trade, of which 77.8% were from intermediate trade and 22.2% from final trade. Mainland China was the largest exporter of embodied CH4 emissions, while the USA was the largest importer. Developed economies such as Western Europe, the USA and Japan were major net receivers of embodied emission transfer, mainly from developing countries. CH4emission footprints of nations were closely related to their human development indexes (HDIs) and per capita gross domestic products (GDPs). Our findings could help to improve current understanding of global anthropogenic CH4 emission increases, and to pinpoint regional and sectoral hotspots for possible emission mitigation in the entire supply chains from production to consumption.

 

zhang_et_al-2018-earth27s_future.pdf
Jonathan M. Moch, Eleni Dovrou, Loretta J. Mickley, Frank N. Keutsch, Yuan Cheng, Daniel J. Jacob, Jingkun Jiang, Meng Li, J. William Munger, Xiaohui Qiao, and Qiang Zhang. 2018. “Contribution of Hydroxymethane Sulfonate to Ambient Particulate Matter: A Potential Explanation for High Particulate Sulfur During Severe Winter Haze in Beijing.” Geophysical Research Letters, 45, Pp. 11969-11979. Publisher's VersionAbstract

PM 2.5 during severe winter haze in Beijing, China, has reached levels as high as 880μg/m3, with sulfur compounds contributing significantly to PM 2.5 composition. This sulfur has been traditionally assumed to be sulfate, although atmospheric chemistry models are unable to account for such large sulfate enhancements under dim winter conditions. Using a 1-D model, we show that well-characterized but previously overlooked chemistry of aqueous-phase HCHO and S(IV) in cloud droplets to form a S(IV)-HCHO adduct, hydroxymethane sulfonate, may explain high particulate sulfur in wintertime Beijing. We also demonstrate in the laboratory that methods of ion chromatography typically used to measure ambient particulates easily misinterpret hydroxymethane sulfonate as sulfate. Our findings suggest that HCHO and not SO2 has been the limiting factor in many haze events in Beijing and that to reduce severe winter pollution in this region, policymakers may need to address HCHO sources such as transportation.

 

Shaojie Song, Meng Gao, Weiqi Xu, Jingyuan Shao, Guoliang Shi, Shuxiao Wang, Yuxuan Wang, Yele Sun, and Michael McElroy. 2018. “Fine particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models.” Atmospheric Chemistry and Physics, 18, Pp. 7423-7438. Publisher's VersionAbstract
pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in North China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA) and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic) to as high as 7 (neutral). In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol phase composition as inputs (i.e., reverse mode) are sensitive to the measurement errors of ionic species and inferred pH values exhibit a bimodal distribution with peaks between −2 and 2 and between 7 and 10. Calculations using total (gas plus aerosol phase) measurements as inputs (i.e., forward mode) are affected much less by the measurement errors, and results are thus superior to those obtained from the reverse mode calculations. Forward mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5) for fine particles in North China winter haze, indicating further that ammonia plays an important role in determining this property. The differences in pH predicted by the forward mode E-AIM and ISORROPIA calculations may be attributed mainly to differences in estimates of activity coefficients for hydrogen ions. The phase state assumed, which can be either stable (solid plus liquid) or metastable (only liquid), does not significantly impact pH predictions of ISORROPIA.
Qing Yang, Hewen Zhou, Xiaoyan Zhang, Chris P. Nielsen, Jiashuo Li, Xi Lu, Haiping Yang, and Hanping Chen. 2018. “Hybrid life-cycle assessment for energy consumption and greenhouse gas emissions of a typical biomass gasification power plant in China.” Journal of Cleaner Production, 205, Pp. 661-671. Publisher's VersionAbstract

Among biomass energy technologies which are treated as the promising way to mitigate critical energy crisis and global climate change, biomass gasification plays a key role given to its gaseous fuels especially syngas for distributed power plant. However, a system analysis for the energy saving and greenhouse gas emissions abatement potentials of gasification system has been directed few attentions. This study presents a system analysis that combines process and input-output analyses of GHG emissions and energy costs throughout the full chain of activities associated with biomass gasification. Incorporating agricultural production, industrial process and wastewater treatment which is always ignored, the energy inputs in life cycle are accounted for the first commercial biomass gasification power plant in China. Results show that the non-renewable energy cost and GHG emission intensity of the biomass gasification system are 0.163 MJ/MJ and 0.137 kg CO2-eq/MJ respectively, which reaffirm its advantages over coal-fired power plants in clean energy and environmental terms. Compared with other biomass energy processes, gasification performs well as its non-renewable energy cost and CO2 intensity are in the central ranges of those for all of these technologies. Construction of the plant is an important factor in the process’s non-renewable energy consumption, contributing about 44.48% of total energy use. Wastewater treatment is the main contributor to GHG emissions. The biomass gasification and associated wastewater treatment technologies have critical influence on the sustainability and renewability of biomass gasification. The results provide comprehensive analysis for biomass gasification performance and technology improvement potential in regulating biomass development policies for aiming to achieve sustainability globally.

Meng Gao, Gufran Beig, Shaojie Song, Hongliang Zhang, Jianlin Hu, Qi Ying, Fengchao Liang, Yang Liu, Haikun Wang, Xiao Lu, Tong Zhu, Gregory Carmichael, Chris P. Nielsen, and Michael B. McElroy. 2018. “The Impact of Power Generation Emissions on Ambient PM2.5 Pollution and Human Health in China and India.” Environment International, 121, Part 1, Pp. 250-259. Publisher's VersionAbstract

Emissions from power plants in China and India contain a myriad of fine particulate matter (PM2.5, PM≤2.5 micrometers in diameter) precursors, posing significant health risks among large, densely settled populations. Studies isolating the contributions of various source classes and geographic regions are limited in China and India, but such information could be helpful for policy makers attempting to identify efficient mitigation strategies. We quantified the impact of power generation emissions on annual mean PM2.5 concentrations using the state-of-the-art atmospheric chemistry model WRF-Chem (Weather Research Forecasting model coupled with Chemistry) in China and India. Evaluations using nationwide surface measurements show the model performs reasonably well. We calculated province-specific annual changes in mortality and life expectancy due to power generation emissions generated PM2.5 using the Integrated Exposure Response (IER) model, recently updated IER parameters from Global Burden of Disease (GBD) 2015, population data, and the World Health Organization (WHO) life tables for China and India. We estimate that 15 million (95% Confidence Interval (CI): 10 to 21 million) years of life lost can be avoided in China each year and 11 million (95% CI: 7 to 15 million) in India by eliminating power generation emissions. Priorities in upgrading existing power generating technologies should be given to Shandong, Henan, and Sichuan provinces in China, and Uttar Pradesh state in India due to their dominant contributions to the current health risks.

 

Bo Zhang, Yaowen Zhang, Xueli Zhao, and Jing Meng. 2018. “Non-CO2 Greenhouse Gas Emissions in China 2012: Inventory and Supply Chain Analysis.” Earth's Future, 6. Publisher's VersionAbstract
Reliable inventory information is critical in informing emission mitigation efforts. Using the latest officially released emission data, which is production based, we take a consumption perspective to estimate the non-CO2 greenhouse gas (GHG) emissions for China in 2012. The non-CO2 GHG emissions, which cover CH4, N2O, HFCs, PFCs, and SF6, amounted to 2003.0 Mt. CO2-eq (including 1871.9 Mt. CO2-eq from economic activities), much larger than the total CO2 emissions in some developed countries. Urban consumption (30.1%), capital formation (28.2%), and exports (20.6%) derived approximately four fifths of the total embodied emissions in final demand. Furthermore, the results from structural path analysis help identify critical embodied emission paths and key economic sectors in supply chains for mitigating non-CO2 GHG emissions in Chinese economic systems. The top 20 paths were responsible for half of the national total embodied emissions. Several industrial sectors such as Construction, Production and Supply of Electricity and SteamManufacture of Food and Tobacco and Manufacture of Chemicalsand Chemical Products played as the important transmission channels. Examining both production- and consumption-based non-CO2 GHG emissions will enrich our understanding of the influences of industrial positions, final consumption demands, and trades on national non-CO2 GHG emissions by considering the comprehensive abatement potentials in the supply chains.
zhang_et_al-2018-earths_future.pdf
Meng Gao, Yihui Ding, Shaojie Song, Xiao Lu, Xinyu Chen, and Michael B. McElroy. 2018. “Secular decrease of wind power potential in India associated with warming Indian Ocean.” Science Advances, 4, 12, Pp. eaat5256. Publisher's VersionAbstract
The Indian government has set an ambitious target for future renewable power generation, including 60 GW of cumulative wind power capacity by 2022. However, the benefits of these substantial investments are vulnerable to the changing climate. On the basis of hourly wind data from an assimilated meteorology reanalysis dataset covering the 1980–2016 period, we show that wind power potential may have declined secularly over this interval, particularly in western India. Surface temperature data confirm that significant warming occurred in the Indian Ocean over the study period, leading to modulation of high pressure over the ocean. A multivariable linear regression model incorporating the pressure gradient between the Indian Ocean and the Indian subcontinent can account for the interannual variability of wind power. A series of numerical sensitivity experiments confirm that warming in the Indian Ocean contributes to subsidence and dampening of upward motion over the Indian continent, resulting potentially in weakening of the monsoonal circulation and wind speeds over India.
2017
Archana Dayalu. 2017. “Exploring the wide net of human energy systems: From carbon dioxide emissions in China to hydraulic fracturing chemicals usage in the United States.” Harvard University Department of Earth and Planetary Sciences.
Haikun Wang, Yanxu Zhang, Xi Lu, Weimo Zhu, Chris P. Nielsen, Jun Bi, and Michael B. McElroy. 2017. “Trade‐driven relocation of air pollution and health impacts in China.” Nature Communications, 8, 738. Publisher's Version
Peter Sherman, Xinyu Chen, and Michael B. McElroy. 2017. “Wind-generated electricity in China: Decreasing potential, inter-annual variability, and association with climate change.” Scientific Reports, 7. Publisher's VersionAbstract
China hosts the world’s largest market for wind-generated electricity. The financial return and carbon reduction benefits from wind power are sensitive to changing wind resources. Wind data derived from an assimilated meteorological database are used here to estimate what the wind generated electricity in China would have been on an hourly basis over the period 1979 to 2015 at a geographical resolution of approximately 50 km × 50 km. The analysis indicates a secular decrease in generating potential over this interval, with the largest declines observed for western Inner Mongolia (15 ± 7%) and the northern part of Gansu (17 ± 8%), two leading wind investment areas. The decrease is associated with long-term warming in the vicinity of the Siberian High (SH), correlated also with the observed secular increase in global average surface temperatures. The long-term trend is modulated by variability relating to the Pacific Decadal Oscillation (PDO) and the Arctic Oscillation (AO). A linear regression model incorporating indices for the PDO and AO, as well as the declining trend, can account for the interannual variability of wind power, suggesting that advances in long-term forecasting could be exploited to markedly improve management of future energy systems.

Pages