Ma, Rong

In Press
Jing Cao, Mun S Ho, and Rong Ma. In Press. “Analyzing Carbon Pricing Policies using a General Equilibrium Model with Production Parameters Estimated using Firm Data.” Energy Economics. Publisher's VersionAbstract

Policy simulation results of Computable General Equilibrium (CGE) models largely hinge on the choices of substitution elasticities among key input factors. Currently, most CGE models rely on the common elasticities estimated from aggregated data, such as the GTAP model elasticity parameters. Using firm level data, we apply the control function method to estimate CES production functions with capital, labor and energy inputs and find significant heterogeneity in substitution elasticities across different industries. Our capital-labor substitution elasticities are much lower than the GTAP values while our energy elasticities are higher. We then incorporate these estimated elasticities into a CGE model to simulate China's carbon pricing policies and compare with the results using GTAP parameters. Our less elastic K-L substitution lead to lower base case GDP growth, but our more elastic energy substitution lead to lower coal use and carbon emissions. In the carbon tax policy exercises, we find that our elasticities lead to easier reductions in coal use and carbon emissions.

Xueli Zhao, Xiaofang Wu, Chenghe Guan, Rong Ma, Chris P. Nielsen, and Bo Zhang. 2020. “Linking agricultural GHG emissions to the global trade network.” Earth's Future, 8, 3. Publisher's VersionAbstract
As part of the climate policy to meet the 2‐degrees Celsius (2 °C) target, actions in all economic sectors, including agriculture, are required to mitigate global greenhouse gas (GHG) emissions. While there has been an ever‐increasing focus on agricultural greenhouse gas (AGHG) emissions, limited attention has been paid to their economic drivers in the globalized world economy and related mitigation potentials. This paper makes a first attempt to trace AGHG emissions via global trade networks using a multi‐regional input‐output model and a complex network model. Over one third of global AGHG emissions in 2012 can be linked with products traded internationally, of which intermediate trade and final trade contribute 64.2% and 35.8%, respectively. Japan, the USA, Germany, the UK, and Hong Kong are the world's five largest net importers of embodied emissions, while Ethiopia, Australia, Pakistan, India and Argentina are the five largest net exporters. Some hunger‐afflicted developing countries in Asia and Africa are important embodied emission exporters, due to their large‐scale exports of agricultural products. Trade‐related virtual AGHG emission transfers shape a highly heterogenous network, due to the coexistence of numerous peripheral economies and a few highly‐connected hub economies. The network clustering structure is revealed by the regional integration of several trading communities, while hub economies are collectors and distributors in the global trade network, with important implications for emission mitigation. Achieving AGHG emission reduction calls for a combination of supply‐ and demand‐side policies covering the global trade network.
Wenjie Tian, Xudong Wu, Rong Ma, and Bo Zhang. 2019. “Quantifying global CH4 and N2O footprints.” Journal of Environmental Management, 251, 109566. Publisher's VersionAbstract
This study aims to quantify global CH4 and N2O footprints in 2012 in terms of 181 economies and 20 world regions based on the official national emission accounts from the UNFCCC database and the global multi-region input-output accounts from the EORA database. Global total CH4 and N2O emissions increased by 15.0% in 2012 compared to 1990, mainly driven by increasing demands of agricultural and energy products. Mainland China, Western Europe, the USA, Southeast Asia and Sub-Saharan Africa were identified as the largest five CH4 footprint contributors (55.6% of the global total), while Mainland China, the USA, Western Europe, Brazil and Sub-Saharan Africa as the largest N2O footprint contributors (59.2% of the global total). In most developed economies, the CH4 and N2O footprints were much higher than their emissions on the production side, but opposite picture is observed in emerging economies. 36.4% and 24.8% of the global CH4 and N2O emissions in 2012 were associated with international trade, respectively. Substantial energy-related CH4 and agricultural CH4 and N2O emissions were transferred from developed countries to developing countries. Several nations within Kyoto targets have reduced their CH4 and N2O emissions significantly between 1990 and 2012, but the generally-believed success is challenged when viewing from the consumption side. Mainland China, Southeast Asia, Sub-Saharan Africa, Brazil, Middle East and India witnessed prominent increase of CH4 and N2O footprints in the same period. The structure and spatial patterns of global CH4 and N2O footprints shed light on the role of consumption-side actions and international cooperation for future non-CO2 GHG emission reduction.