Publications by Type: Journal Article

In Press
Jing Cao, Mun Sing Ho, Yating Li, Richard G. Newell, and William A. Pizer. In Press. “Chinese residential electricity consumption estimation and forecast using micro-data.” Resource and Energy Economics. Publisher's VersionAbstract
Based on econometric estimation using data from the Chinese Urban Household Survey, we develop a preferred forecast range of 85–143 percent growth in residential per capita electricity demand over 2009–2025. Our analysis suggests that per capita income growth drives a 43% increase, with the remainder due to an unexplained time trend. Roughly one-third of the income-driven demand comes from increases in the stock of specific major appliances, particularly AC units. The other two-thirds comes from non-specific sources of income-driven growth and is based on an estimated income elasticity that falls from 0.28 to 0.11 as income rises. While the stock of refrigerators is not projected to increase, we find that they contribute nearly 20 percent of household electricity demand. Alternative plausible time trend assumptions are responsible for the wide range of 85–143 percent. Meanwhile we estimate a price elasticity of demand of −0.7. These estimates point to carbon pricing and appliance efficiency policies that could substantially reduce demand.
Jaume Freire-González and Mun S. Ho. In Press. “Environmental fiscal reform and the double dividend: evidence from a dynamic general equilibrium model.” Sustainability.
Michael B. McElroy, Xinyu Chen, and Yawen Deng. In Press. “The missing money problem: incorporation of increased resources from wind in a representative US power market.” Renewable Energy.
Xinyu Chen, Zhiwei Xu, Chris P Nielsen, and Michael B. McElroy. In Press. “Plug-in electric vehicles: Opportunities to reduce emissions of CO2 and conventional pollutants in China.” Nature Energy.
Chenghe Guan. In Press. “Urban form and digitalization of urban design.” Urban Planning International.
Submitted
Jing Cao, Mun S. Ho, and Govinda R. Timilsina. Submitted. “Carbon Tax for Achieving China's NDC: Simulations of Some Design Features Using a CGE Model.” Climate Change Economics.
Xinyu Chen, Junling Huang, Qing Yang, Chris P. Nielsen, Dongbo Shi, and Michael B. McElroy. Submitted. “Changing carbon content of Chinese coal and implications for emissions of CO2.” Journal of Cleaner Production.
Xi Lu, Liang Cao, Haikun Wang, Wei Peng, Jia Xing, Shuxiao Wang, Siyi Cai, Bo Shen, Qing Yang, Chris P. Nielsen, and Michael B. McElroy. Submitted. “Gasification of coal and biomass: a net negative-carbon power source for environmental friendly electricity generation in China.” Proceedings of the National Academy of Sciences.
Chenghe Guan and Richard B. Peiser. Submitted. “Accessibility, urban form, and property value: Toward a sustainable urban spatial structure.” Journal of Transport and Land Use.
Sumeeta Srinivasan and Chenghe Guan. Submitted. “Built environment, income and travel behavior: Changes in Chengdu 2005-2016.” Journal of Transport Geography.
Xueli Zhao, Xiaofang Wu, Chenghe Guan, Chris P. Nielsen, and Bo Zhang. Submitted. “Drivers of agricultural greenhouse gas emissions across the world.” Environmental Research Letters.
Xingning Han, Xinyu Chen, Michael B. McElroy, Shiwu Liao, Chris P. Nielsen, and Jinyu Wen. Submitted. “Fast unit commitment for power system planning under high penetration of variable renewables.” IEEE Transactions on Power Systems.
Shaojie Song, Meng Gao, Weiqi Xu, Jingyuan Shao, Guoliang Shi, Shuxiao Wang, Yuxuan Wang, Yele Sun, and Michael McElroy. Submitted. “Fine particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models.” Atmospheric Chemistry and Physics. Available in ACPD during reviewAbstract
pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in North China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA) and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic) to as high as 7 (neutral). In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol phase composition as inputs (i.e., reverse mode) are sensitive to the measurement errors of ionic species and inferred pH values exhibit a bimodal distribution with peaks between −2 and 2 and between 7 and 10. Calculations using total (gas plus aerosol phase) measurements as inputs (i.e., forward mode) are affected much less by the measurement errors, and results are thus superior to those obtained from the reverse mode calculations. Forward mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5) for fine particles in North China winter haze, indicating further that ammonia plays an important role in determining this property. The differences in pH predicted by the forward mode E-AIM and ISORROPIA calculations may be attributed mainly to differences in estimates of activity coefficients for hydrogen ions. The phase state assumed, which can be either stable (solid plus liquid) or metastable (only liquid), does not significantly impact pH predictions of ISORROPIA.
Xinyu Chen, Jiajun Lv, Michael B. McElroy, Xingning Han, Chris Nielsen, and Jinyu Wen. Submitted. “Power system capacity expansion under higher penetration of renewables considering flexibility constraints and low carbon policies.” IEEE Transactions on Power Systems.
X.D. Wu, Q. Yang, G.Q. Chen, T. Hayat, and A. Alsaedi. Submitted. “Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2x600 MW retrofitted oxyfuel power plant as a case study.” Renewable and Sustainable Energy Reviews.
Qing Yang, Xiaoyan Zhang, Hewen Zhou, Chris P Nielsen, Jiashuo Li, Xi Lu, Haiping Yang, and Hanping Chen. Submitted. “A system analysis of energy consumption and greenhouse gas emissions of a biomass gasification power plant in China.” Journal of Cleaner Production.
Archana Dayalu, William Munger, Steven Wofsy, Yuxuan Wang, Thomas Nehrkorn, Yu Zhao, Michael McElroy, Chris Nielsen, and Kristina Luus. Submitted. “VPRM-CHINA: Using the Vegetation, Photosynthesis, and Respiration Model to partition contributions to CO2 measurements in Northern China during the 2005-2009 growing seasons..” Biogeosciences.
2018
Bo Zhang, Yaowen Zhang, Xueli Zhao, and Jing Meng. 2018. “Non-CO2 Greenhouse Gas Emissions in China 2012: Inventory and Supply Chain Analysis.” Earth's Future, 6. Publisher's VersionAbstract
Reliable inventory information is critical in informing emission mitigation efforts. Using the latest officially released emission data, which is production based, we take a consumption perspective to estimate the non-CO2 greenhouse gas (GHG) emissions for China in 2012. The non-CO2 GHG emissions, which cover CH4, N2O, HFCs, PFCs, and SF6, amounted to 2003.0 Mt. CO2-eq (including 1871.9 Mt. CO2-eq from economic activities), much larger than the total CO2 emissions in some developed countries. Urban consumption (30.1%), capital formation (28.2%), and exports (20.6%) derived approximately four fifths of the total embodied emissions in final demand. Furthermore, the results from structural path analysis help identify critical embodied emission paths and key economic sectors in supply chains for mitigating non-CO2 GHG emissions in Chinese economic systems. The top 20 paths were responsible for half of the national total embodied emissions. Several industrial sectors such as Construction, Production and Supply of Electricity and SteamManufacture of Food and Tobacco and Manufacture of Chemicalsand Chemical Products played as the important transmission channels. Examining both production- and consumption-based non-CO2 GHG emissions will enrich our understanding of the influences of industrial positions, final consumption demands, and trades on national non-CO2 GHG emissions by considering the comprehensive abatement potentials in the supply chains.
zhang_et_al-2018-earths_future.pdf
2017
Changyi Liu, Yang Wang, and Rong Zhu. 2017. “Assessment of the economic potential of China's onshore wind electricity.” Resources, Conservation and Recycling, 121, Pp. 33-39. Publisher's VersionAbstract

The assessment of the economic potential of wind electricity is of critical importance for wind power development in China. Based on the wind resource data between 1995 and 2014 and geological assumptions, this paper calculates economic potential of China’s onshore wind electricity. Furthermore, it builds an econometric model to update the net-present-value model, based on a survey sample of various wind farms. Results show that the economic potential of China’s onshore wind electricity is 8.13 PWh per year with a feed-in-tariff price at 0.60 yuan (about 9.6 U.S. cents) per kilowatt-hour.

Xinyu Chen, Michael B. McElroy, and Chongqing Kang. 2017. “Integrated energy systems for higher wind penetration in China: Formulation, implementation, and impacts.” IEEE Transactions on Power Systems. Publisher's VersionAbstract
With the largest installed capacity in the world, wind power in China is experiencing a ∼20% curtailment. The inflexible combined heat and power (CHP) has been recognized as the major barrier for integrating the wind source. The approach to reconcile the conflict between inflexible CHP units and variable wind power in Chinese energy system is yet un-clear. This paper explores the technical and economic feasibility of deploying the heat storage tanks and electric boilers under typical power grids and practical operational regulations. A mixed integer linear optimization model is proposed to simulate an integrated power and heating energy systems, including a CHP model capable of accounting for the commitment decisions and non-convex energy generation constraints. The model is applied to simulate a regional energy system (Jing-Jin-Tang) covering 100-million population, with hourly resolution over a year, incorporating actual data and operational regulations. The results project an accelerating increase in wind curtailment rate at elevated wind penetration. Investment for wind breaks-even at 14% wind penetration. At such penetration, the electric boiler (with heat storage) is effective in reducing wind curtailment. The investment in electric boilers is justified on a social economic basis, but the revenues for different stakeholders are not distributed evenly.

Pages