Climate Change & Air Pollution

Jin-Tai Lin, Michael B. McElroy, and K. Folkert Boersma. 2010. “Constraint of anthropogenic NOx emissions in China from different sectors: A new methodology using separate satellite retrievals.” Atmospheric Chemistry and Physics, 10, 1, Pp. 63-78. Publisher's VersionAbstract
A new methodology is developed to constrain
Chinese anthropogenic emissions of nitrogen oxides (NOx)
from four major sectors (industry, power plants, mobile and
residential) in July 2008. It combines tropospheric NO2 column
retrievals from GOME-2 and OMI, taking advantage
of their different passing time over China (10:00 a.m. LT
(local time) versus 02:00 p.m.) and consistent retrieval algorithms.
The approach is based on the difference of NOx
columns at the overpass times of the two instruments; it thus
is less susceptible to the likely systematic errors embedded
in individual retrievals that are consistent with each other.
Also, it explicitly accounts for diurnal variations and uncertainties
of NOx emissions for individual sources. Our best
top-down estimate suggests a national budget of 6.8 TgN/yr
(5.5 TgN/yr for East China), close to the a priori bottom-up
emission estimate from the INTEX-B mission for the year of
2006. The top-down emissions are lower than the a priori
near Beijing, in the northeastern provinces and along the east
coast; yet they exceed the a priori over many inland regions.
Systematic errors in satellite retrievals are estimated to lead
to underestimation of top-down emissions by at most 17%
(most likely 10%). Effects of other factors on the top-down
estimate are typically less than 15% each, including lightning,
soil emissions, mixing in planetary boundary layer, anthropogenic
emissions of carbon monoxide and volatile organic
compounds, magnitude of a priori emissions, assumptions
on emission diurnal variations, and uncertainties in the
four sectors. The a posteriori emission budget is 5.7 TgN/yr
for East China.
Youn Daeok, Kenneth O Patten, Jin-Tai Lin, and Donald J. Wuebbles. 2009. “Explicit calculation of indirect global warming potentials for halons using atmospheric models.” Atmospheric Chemistry and Physics, 9, 22, Pp. 8719-8733. Publisher's VersionAbstract
The concept of Global Warming Potentials
(GWPs) has been extensively used in policy consideration
as a relative index for comparing the climate impact of an
emitted greenhouse gas (GHG), relative to carbon dioxide
with equal mass emissions. Ozone depletion due to emission
of chlorinated or brominated halocarbons leads to cooling
of the climate system in the opposite direction to the direct
warming contribution by halocarbons as GHGs. This
cooling is a key indirect effect of the halocarbons on climatic
radiative forcing, which is accounted for by indirect GWPs.
With respect to climate, it is critical to understand net influences
considering direct warming and indirect cooling effects
especially for Halons due to the greater ozone-depleting efficiency
of bromine over chlorine. Until now, the indirect
GWPs have been calculated using a parameterized approach
based on the concept of Equivalent Effective Stratospheric
Chlorine (EESC) and the observed ozone depletion over the
last few decades. As a step towards obtaining indirect GWPs
through a more robust approach, we use atmospheric models
to explicitly calculate the indirect GWPs of Halon-1211
and Halon-1301 for a 100-year time horizon. State-of-theart
global chemistry-transport models (CTMs) were used as
the computational tools to derive more realistic ozone depletion
changes caused by an added pulse emission of the
two major Halons at the surface. The radiative forcings on
climate from the ozone changes have been calculated for indirect
GWPs using an atmospheric radiative transfer model
(RTM). The simulated temporal variations of global average
total column Halons after a pulse perturbation follow an exponential
decay with an e-folding time which is consistent
with the expected chemical lifetimes of the Halons. Our cal-
Correspondence to: D. J. Wuebbles
(wuebbles@atmos.uiuc.edu)
culated indirect GWPs for the two Halons are much smaller
than those from past studies but are within a single standard
deviation of WMO (2007) values and the direct GWP values
derived agree with the published values. Our model-based
assessment of the Halon indirect GWPs thus confirms the
significant importance of indirect effects on climate.
Sue J. Lin, I.J. Lu, and Charles Lewis. 2006. “Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member’s (Taiwan) perspective.” Energy Policy, 34, Pp. 1499-1507. Publisher's VersionAbstract
In this study we use Divisia index approach to identify key factors affecting CO2 emission changes of industrial sectors in Taiwan. The changes of CO2 emission are decomposed into emission coefficient, energy intensity, industrial structure and economic growth. Furthermore, comparisons with USA, Japan, Germany, the Netherlands and South Korea are made to have a better understanding of emission tendency in these countries and to help formulate our CO2 reduction strategies for responding to the international calls for CO2 cuts. The results show that economic growth and high energy intensity were two key factors for the rapid increase of industrial CO2 emission in Taiwan, while adjustment of industrial structure was the main component for the decrease. Although economic development is important, Taiwan must keep pace with the international trends for CO2 reduction. Among the most important strategies are continuous efforts to improve energy intensity, fuel mix toward lower carbon, setting targets for industrial CO2 cuts, and advancing green technology through technology transfer. Also, the clean development mechanism (CDM) is expected to play an important role in the future.
Yu Zhao, Jie Zhang, and Chris P Nielsen. 2014. “The effects of energy paths and emission controls and standards on future trends in China's emissions of primary air pollutants.” Atmospheric Chemistry and Physics, 14, Pp. 8849-8868. Publisher's VersionAbstract
To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total suspended particles (TSP), PM10, and PM2.5 are estimated to decline 7, 20, 41, 34, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17 (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12 and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby concentrations of negative-forcing sulfate particles. Expanded control of emissions of fine particles and carbonaceous aerosols from small industrial and residential sources is recommended, and a more comprehensive emission control strategy targeting a wider range of pollutants (volatile organic compounds, NH3 and CO, etc.) and taking account of more diverse environmental impacts is also urgently needed.
Yu Lei, Qiang Zhang, Chris P Nielsen, and Kebin He. 2011. “An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990-2020.” Atmospheric Environment, 45, 1, Pp. 147-154. Publisher's VersionAbstract
Direct emissions of air pollutants from the cement industry in China were estimated by developing a technology-based methodology using information on the proportion of cement produced from different types of kilns and the emission standards for the Chinese cement industry. Historical emissions of sulfur dioxide (SO2), nitrogen oxides (NOX), carbon monoxide (CO), particulate matter (PM) and carbon dioxide (CO2) were estimated for the years 1990–2008, and future emissions were projected up to 2020 based on current energy-related and emission control policies. Compared with the historical high (4.36 Tg of PM2.5, 7.16 Tg of PM10 and 10.44 Tg of TSP in 1997), PM emissions are predicted to drop substantially by 2020, despite the expected tripling of cement production. Certain other air pollutant emissions, such as CO and SO2, are also predicted to decrease with the progressive closure of shaft kilns. NOX emissions, however, could increase because of the promotion of precalciner kilns and the rapid increase of cement production. CO2 emissions from the cement industry account for approximately one eighth of China’s national CO2 emissions. Our analysis indicates that it is possible to reduce CO2 emissions from this industry by approximately 12.8% if advanced energy-related technologies are implemented. These technologies will bring co-benefits in reducing other air pollutants as well.
Shuxiao Wang, Jiming Hao, Yongqi Lu, and Ji Li. 2007. “Local population exposure to pollutants from the major industrial sectors.” In Clearing the air: The health and economic damages of air pollution in China, edited by Mun S Ho and Chris P Nielsen. Cambridge, MA: MIT Press. Publisher's VersionAbstract

An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.

China's historic economic expansion is driven by fossil fuels, which increase its emissions of both local air pollutants and greenhouse gases dramatically. Clearing the Air is an innovative, quantitative examination of the national damage caused by China's degraded air quality, conducted in a pathbreaking, interdisciplinary U.S.-China collaboration. Its damage estimates are allocated by sector, making it possible for the first time to judge whether, for instance, power generation, transportation, or an unexpected source such as cement production causes the greatest environmental harm. Such objective analyses can reset policy priorities.

Clearing the Air uses this information to show how appropriate "green" taxes might not only reduce emissions and health damages but even enhance China's economic growth. It also shows to what extent these same policies could limit greenhouse gases, suggesting that wealthier nations have a responsibility to help China build environmental protection into its growth.

Clearing the Air is written for diverse readers, providing a bridge from underlying research to policy implications, with easily accessible overviews of issues and summaries of the findings for nonspecialists and policymakers followed by more specialized, interlinked studies of primary interest to scholars. Taken together, these analyses offer a uniquely integrated assessment that supports the book's economic and policy recommendations.

P. Suntharalingam, C. M. Spivakovsky, J. A. Logan, and M.B. McElroy. 2003. “Estimating the distribution of terrestrial CO2 sources and sinks from atmospheric measurements: Sensitivity to configuration of the observation network.” Journal of Geophysical Research, 108, D15. Publisher's VersionAbstract
We explore the sensitivity of terrestrial CO2 flux estimates from a specific inversion methodology, based on the configuration of Fan et al. [1998], to different configurations of the global observation network. Using diagnostics derived from the inversion equations, we focus on quantifying the relative influence of individual stations on the flux estimates. We also examine the impact of different assumptions for the data uncertainty values by contrasting weighted and unweighted inversions and presenting related sensitivity analyses. For this particular methodology, unweighted estimates of continental scale fluxes prove very sensitive to network configuration. The inclusion or omission of a few important stations in and around the northern continents can result in shifts in continental‐scale flux estimates of up to 1.5 Gt C/year. The weighted estimates are less sensitive to network configuration. Diagnostics of relative station influence indicate that this results from the reduced roles of previously influential continental sites; i.e., those stations characterized by high levels of data uncertainty. In the weighted approach, stations on continental peripheries associated with lower levels of data uncertainty are the most important in determining terrestrial fluxes. Finally, using the diagnostics of relative station influence, we discuss potential sampling strategies for the determination of regional fluxes from surface measurements.
Yu Lei. 2013. “Benefits to Human Health and Agricultural Productivity of Reduced Air Pollution.” In Clearer Skies Over China: Reconciling Air Quality, Climate, and Economic Goals, Pp. 291-328. Cambridge, MA: MIT Press. Publisher's VersionAbstract

A groundbreaking U.S.–Chinese inquiry into the effects of recent air pollution controls and prospective carbon taxes on China's economy and environment.

China's carbon dioxide emissions now outstrip those of other countries and its domestic air quality is severely degraded, especially in urban areas. Its sheer size and its growing, fossil-fuel-powered economy mean that China's economic and environmental policy choices will have an outsized effect on the global environmental future. Over the last decade, China has pursued policies that target both fossil fuel use and atmospheric emissions, but these efforts have been substantially overwhelmed by the country's increasing energy demands. With a billion citizens still living on less than $4,000 per year, China's energy and environmental policies must be reconciled with the goals of maintaining economic growth and raising living standards.

This book, a U.S.–Chinese collaboration of experts from Harvard and Tsinghua University, offers a groundbreaking integrated analysis of China's economy, emissions, air quality, public health, and agriculture. It first offers essential scientific context and accessible summaries of the book's policy findings; it then provides the underlying scientific and economic research. These studies suggest that China's recent sulfur controls achieved enormous environmental health benefits at unexpectedly low costs. They also indicate that judicious implementation of carbon taxes could reduce not only China's carbon emissions but also its air pollution more comprehensively than current single-pollutant policies, all at little cost to economic growth.

Yanyang Mei, Qingfeng Che, Qing Yang, Christopher Draper, Haiping Yang, Shihong Zhang, and Hanping Chen. 2016. “Torrefaction of different parts from a corn stalk and its effect on the characterization of products.” Industrial Crops and Products, 92, 15 December, Pp. 26-33. Publisher's VersionAbstract

Torrefaction of biomass can reduce its undesirable properties for the subsequent thermochemical application. After separating a Chinese corn stalk into four parts (leaf, stem, root, and cob), torrefaction was performed at temperatures of 200, 250, and 300 °C respectively. The structural and components differences of various parts were analyzed, along with the solid, gas, and liquid products. The study showed that the root was the most sensitive to heat and the cob showed the biggest increase in CO2 and CO yields with the increase temperature, due to their different content of hemicellulose and cellulose. The torrefaction temperature of 250 °C was especially significant for the formation of acids. Liquid product from the leaf was simpler in composition and lower in yield due to higher content of organic extractives and ash. Generally, various parts have different torrefaction properties due to the differences in chemical composition and cellular structure. And with the thermochemical application of biomass were more widely used in the chemical industry especially fine chemical industry, screening and classification may be necessary.

Clearer Skies Over China: Reconciling Air Pollution, Climate, and Economic Goals
2013. Clearer Skies Over China: Reconciling Air Pollution, Climate, and Economic Goals. Cambridge, MA: MIT Press. Publisher's VersionAbstract

A groundbreaking U.S.–Chinese inquiry into the effects of recent air pollution controls and prospective carbon taxes on China's economy and environment.

China's carbon dioxide emissions now outstrip those of other countries and its domestic air quality is severely degraded, especially in urban areas. Its sheer size and its growing, fossil-fuel-powered economy mean that China's economic and environmental policy choices will have an outsized effect on the global environmental future. Over the last decade, China has pursued policies that target both fossil fuel use and atmospheric emissions, but these efforts have been substantially overwhelmed by the country's increasing energy demands. With a billion citizens still living on less than $4,000 per year, China's energy and environmental policies must be reconciled with the goals of maintaining economic growth and raising living standards.

This book, a U.S.–Chinese collaboration of experts from Harvard and Tsinghua University, offers a groundbreaking integrated analysis of China's economy, emissions, air quality, public health, and agriculture. It first offers essential scientific context and accessible summaries of the book's policy findings; it then provides the underlying scientific and economic research. These studies suggest that China's recent sulfur controls achieved enormous environmental health benefits at unexpectedly low costs. They also indicate that judicious implementation of carbon taxes could reduce not only China's carbon emissions but also its air pollution more comprehensively than current single-pollutant policies, all at little cost to economic growth.

Jintai Lin, Chris P Nielsen, Yu Zhao, Yu Lei, Yang Liu, and Michael B. McElroy. 2010. “Recent changes in particulate air pollution over China observed from space and ground: Effectiveness of emission control.” Environmental Science and Technology, 44, 20, Pp. 7771-7776. Publisher's VersionAbstract
The Chinese government has moved aggressively since 2005 to reduce emissions of a number of pollutants including primary particulate matter (PM) and sulfur dioxide (SO2), efforts inadvertently aided since late 2008 by economic recession. Satellite observations of aerosol optical depth (AOD) and column nitrogen dioxide (NO2) provide independent indicators of emission trends, clearly reflecting the sharp onset of the recession in the fall of 2008 and rebound of the economy in the latter half of 2009. Comparison of AOD with ground-based observations of PM over a longer period indicate that emission-control policies have not been successful in reducing concentrations of aerosol pollutants at smaller size range over industrialized regions of China. The lack of success is attributed to the increasing importance of anthropogenic secondary aerosols formed from precursor species including nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOC), and ammonia (NH3).

Pages