Climate Change & Air Pollution

Hu Xian

Xian Hu

Ph.D. Student, School of Economics and Management, Tsinghua University
Alumna (Visiting Fellow) and Collaborator, Harvard-China Project
Shaojie Song, Haiyang Lin, Peter Sherman, Xi Yang, Shi Chen, Xi Lu, Tianguang Lu, Xinyu Chen, and Michael B. McElroy. 2022. “Deep decarbonization of the Indian economy: 2050 prospects for wind, solar, and green hydrogen.” iScience, 25, 6, Pp. 104399. Publisher's VersionAbstract
The paper explores options for a 2050 carbon free energy future for India. Onshore wind and solar sources are projected as the dominant primary contributions to this objective. The analysis envisages an important role for so-called green hydrogen produced by electrolysis fueled by these carbon free energy sources. This hydrogen source can be used to accommodate for the intrinsic variability of wind and solar complementing opportunities for storage of power by batteries and pumped hydro. The green source of hydrogen can be used also to supplant current industrial uses of gray hydrogen produced in the Indian context largely from natural gas with important related emissions of CO2. The paper explores further options for use of green hydrogen to lower emissions from otherwise difficult to abate sectors of both industry and transport. The analysis is applied to identify the least cost options to meet India’s zero carbon future.
Shi Chen, Xi Lu, Chris P. Nielsen, Guannan Geng, Michael B. McElroy, Shuxiao Wang, and Jiming Hao. 2022. “Improved air quality in China can enhance solar power performance and accelerate carbon neutrality targets.” One Earth, 5, 5, Pp. 550-562. Publisher's VersionAbstract
China forecasts that a 14-fold increase in photovoltaic installations is needed to meet 2060 carbon-neutrality targets. In light of the fact that air pollution impairs photovoltaic performance, pollution control could reduce the installation requirement, but research has not yet taken into account the coeval impact of unfavorable meteorological conditions, which also impair performance. Here, we employ a coupled model to determine the impact of air-pollution control policies on China’s photovoltaic power output in the presence of varying meteorological conditions between 1995 and 2019. We find that the benefits of air-pollution control introduced in 2004 were only partially offset by unfavorable meteorological conditions (primarily in Central and South China) and resulted in solar-power performance improvement of 0.9%/decade from 2008 onward. Further analysis shows that solar-power output in 2020 was 1.7% higher thanks to air-pollution control and that more stringent air-quality targets could reduce the demand for photovoltaic installed capacity needed to meet the 2060 carbon-neutrality target.
Ziwen Ruan, Xi Lu, Shuxiao Wang, Jia Xing, Wei Wang, Dan Chen, Chris P. Nielsen, Yong Luo, Kebin He, and Jiming Hao. 2022. “Impacts of large-scale deployment of mountainous wind farms on wintertime regional air quality in the Beijing-Tian-Hebei area.” Atmospheric Environment, 278, 119074. Publisher's VersionAbstract
The development of wind power plays an essential role in achieving China's carbon neutrality goals and air quality standards. A large number of studies have addressed the benefits of substituting fossil fuels with wind power on climate and air quality (defined as indirect impact) by macro-scale methodology. In recent years, more and more researchers have discussed its impacts on the general atmospheric circulation and air pollution dispersion (defined as direct impact) by parameterizing wind energy extraction in meso-micro scale models. However, the comprehensive investigation (considering both direct and indirect impacts) of the utilization of wind power on atmosphere environmental impacts remains vacant. Our study first evaluated both the direct and indirect impacts of wind power on air quality through an integrated methodological framework by using WRF-CMAQ system. The present analysis took wind farms located in Zhangjiakou to explore their impacts on air quality in winter, particularly over the downwind Beijing municipal area in the North China Plain. Results indicated that the deployment of wind power leads to spatially mixed direct impacts on PM2.5 concentrations in Beijing with a monthly net increase of 0.067 μg/m3 (0.08%) relative to the regional average. Contrarily, the substitution of coal-burning with wind power in rural household heating would result in notable indirect benefits to monthly PM2.5 concentrations in Beijing, specifically, reducing emissions of CO2 and conventional air pollutants by 64% in rural heating sector. The combined impacts of wind power displayed regional differences: in the wintertime (January), Zhangjiakou PM2.5 concentrations increased (+0.147 μg/m3) whereas, decreases are achieved (−5.642 μg/m3) in Beijing. Therefore, to support the large-scale deployment of wind power, future energy policies should take comprehensive account of the diverse environmental impacts, including both the indirect benefits of fossil energy substitution and the potential direct atmospheric effects on regional air quality.

Pages