Climate Change & Air Pollution

Ning Zhang, Xi Lu, Chris P Nielsen, Michael B. McElroy, Xinyu Chen, Yu Deng, and Chongqing Kang. 2016. “Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage.” Applied Energy, 184, Pp. 987-994. Publisher's VersionAbstract

Accommodating variable wind power poses a critical challenge for electric power systems that are heavily dependent on combined heat and power (CHP) plants, as is the case for north China. An improved unit-commitment model is applied to evaluate potential benefits from pumped hydro storage (PHS) and electric boilers (EBs) in West Inner Mongolia (WIM), where CHP capacity is projected to increase to 33.8 GW by 2020. A business-as-usual (BAU) reference case assumes deployment of 20 GW of wind capacity. Compared to BAU, expanding wind capacity to 40 GW would allow for a reduction in CO2 emissions of 33.9 million tons, but at a relatively high cost of US$25.3/ton, reflecting primarily high associated curtailment of wind electricity (20.4%). A number of scenarios adding PHS and/or EBs combined with higher levels of wind capacity are evaluated. The best case indicates that a combination of PHS (3.6 GW) and EBs (6.2 GW) together with 40 GW of wind capacity would reduce CO2 emissions by 43.5 million tons compared to BAU, and at a lower cost of US$16.0/ton. Achieving this outcome will require a price-incentive policy designed to ensure the profitability of both PHS and EB facilities.

Yuxuan Wang, Xuan Wang, Yutaka Kondo, Mizuo Kajino, J. William Munger, and Jiming Hao. 2011. “Black carbon and its correlation with trace gases at a rural site in Beijing: implications for regional emissions.” Journal of Geophysical Research, 116, D24. Publisher's VersionAbstract
The mass concentrations of black carbon (BC) were measured continuously at Miyun, a rural site near Beijing, concurrently with some trace gases (CO, CO2, NOy, SO2) during the nonheating seasons of 2010 (April to October). The average concentration of BC was 2.26 ± 2.33 μg m−3. About 70%–100% of the air masses arriving at the site from June to September were from the source region of Beijing and the North China Plain (NCP), while in the spring, 40% were of continental background origin. BC had moderate to strong positive correlations with CO (R2 = 0.51), NOy (R2 = 0.58), and CO2 (nonsummer, R2 = 0.54), but not with SO2 (R2 < 0.1). The observed ΔBC/ΔCO ratio was 0.0050 ± 0.0001 μg m−3/ppbv for the regional air masses (excluding the influence of biomass burning). This ratio increased by 68% to 0.0084 ± 0.0004 μg m−3/ppbv after excluding the influence of wet deposition. Accounting further for the impact of atmospheric processes on the observation, we derived an average top‐down BC/CO emission ratio of 0.0095 ± 0.002 μg m−3/ppbv for the source region of Beijing and NCP that is 18%–21% lower than the average emission ratio from the bottom‐up inventory of Zhang et al. (2009), whereas the difference is substantially lower than the uncertainty of emissions for either species. The difference between the mean bottom‐up and top‐down emission ratios is most likely to be attributed to the residential sector, which needs to have a lower share in the total emissions of BC or a much lower BC/CO emission ratio. The industry and transportation sectors are found to be dominant sources of BC from Beijing and the NCP rather than from the residential sector as suggested by the bottom‐up inventory.
Yuxuan Wang, Michael B. McElroy, J. William Munger, Jiming Hao, Hong Ma, Chris P Nielsen, and Yaosheng Chen. 2008. “Variations of O3 and CO in summertime at a rural site near Beijing.” Atmospheric Chemistry and Physics, 8, 21, Pp. 6355-6363. Publisher's VersionAbstract
Large intra-season differences in mixing ratios of CO and O3 were detected at Miyun, a rural site north of Beijing, in summer 2006. Despite an increase in mean daytime mixing ratio of CO from 500 ppbv in June to 700 ppbv in July, mean daytime O3 dropped from 67 ppbv in June to 50 ppbv in July and August. The observed changes in CO and O3 are attributed to the influence of the summer monsoonal circulation that develops over the North China Plain in July. Photochemical production of O3 is reduced as a consequence of increased cloudiness during July and August, as indicated by the strong negative correlation observed between O3 and satellite observations of cloud optical depth, with cloudiness having little effect on CO. The analysis suggests a strategy
for emission controls that could be implemented in an economically
efficient manner to minimize the frequency of high levels of O3 during summer in Beijing.
William P. Alford, Robert P. Weller, Leslyn Hall, Karen R. Polenske, Yuanyuan Shen, and David Zweig. 2002. “The human dimensions of environmental policy implementation: Air quality in rural China.” Journal of Contemporary China, 11, 32, Pp. 495-513. Publisher's VersionAbstract
The People's Republic of China is experiencing severe air pollution with very serious public health and economic consequences. Over the past decade, the Chinese government has sought to utilize bureaucratic, political, legal and educational vehicles to address these problems. This paper examines the ways in which those policy measures have been communicated to, understood by, and acted upon by the citizenry, drawing in important part on household and epidemiological surveys conducted in Anhui. Our study suggests that the central government's message has yet to be absorbed to the degree intended and then considers both why this has been the case and how the effectiveness of policy mechanisms might be enhanced.
Chris P Nielsen, Mun S Ho, Yu Zhao, Yuxuan Wang, Yu Lei, and Jing Cao. 2013. “Summary: Sulfur Mandates and Carbon Taxes for 2006-2010.” In Clearer Skies Over China: Reconciling Air Quality, Climate, and Economic Goals, Pp. 59-102. Cambridge, MA: MIT Press. Publisher's VersionAbstract

A groundbreaking U.S.–Chinese inquiry into the effects of recent air pollution controls and prospective carbon taxes on China's economy and environment.

China's carbon dioxide emissions now outstrip those of other countries and its domestic air quality is severely degraded, especially in urban areas. Its sheer size and its growing, fossil-fuel-powered economy mean that China's economic and environmental policy choices will have an outsized effect on the global environmental future. Over the last decade, China has pursued policies that target both fossil fuel use and atmospheric emissions, but these efforts have been substantially overwhelmed by the country's increasing energy demands. With a billion citizens still living on less than $4,000 per year, China's energy and environmental policies must be reconciled with the goals of maintaining economic growth and raising living standards.

This book, a U.S.–Chinese collaboration of experts from Harvard and Tsinghua University, offers a groundbreaking integrated analysis of China's economy, emissions, air quality, public health, and agriculture. It first offers essential scientific context and accessible summaries of the book's policy findings; it then provides the underlying scientific and economic research. These studies suggest that China's recent sulfur controls achieved enormous environmental health benefits at unexpectedly low costs. They also indicate that judicious implementation of carbon taxes could reduce not only China's carbon emissions but also its air pollution more comprehensively than current single-pollutant policies, all at little cost to economic growth.

Haikun Wang, Yanxia Zhang, Xi Lu, Chris P Nielsen, and Jun Bi. 2015. “Understanding China's carbon dioxide emissions from both production and consumption perspectives.” Renewable and Sustainable Energy Reviews, 52, Pp. 189-200. Publisher's VersionAbstract

China is now the largest emitter of CO2 in the world, having contributed nearly half of the global increase in carbon emissions between 1980 and 2010. The existing literature on China’s carbon emissions has focused on two dimensions: the amount of CO2 emitted within China’s geographical boundaries (a production-based perspective), and the drivers of, and responsibility for, these emissions (a consumption-based perspective). The current study begins with a comprehensive review of China’s CO2 emissions, and then analyzes their driving forces from both consumption and production perspectives, at both national and provincial levels. It is concluded that China’s aggregate national CO2 emissions from fossil fuel consumption and cement production maintained high growth rates during 2000-2010. National emissions reached 6.8–7.3 billion tons in 2007, nearly 25% of which were caused by net exports (i.e., exports minus imports) to other countries. However, emission characteristics varied significantly among different regions and provinces, and considerable emission leakage from the developed eastern regions to inland and western areas of the country was found. The objectives of China’s policies should therefore be broadened from continued improvement of energy efficiency to accelerating regional technology transfer and preventing mere relocation of carbon-intensive economic activities from developed coastal regions to less developed, inland provinces. To rapidly and effectively cut down China’s carbon emissions, moreover, its energy supply should be aggressively decarbonized by promoting renewable and low carbon energy sources.

Junling Huang and Michael B. McElroy. 2012. “The contemporary and historical budget of atmospheric CO2.” Canadian Journal of Physics, 90, 8, Pp. 707-716. Publisher's VersionAbstract
Observations of CO2 and O2 are interpreted to develop an understanding of the changes in the abundance of atmospheric CO2 that have arisen over the period 1995–2007. Fossil fuels accounted for an addition of 89.3 Gt of carbon to the atmosphere over this time period, 29% of which was transferred to the ocean, 15% to the global biosphere, with the balance (57%) retained by the atmosphere. Analysis of historical data for CO2 derived from studies of gases trapped in ice at Law Dome in Antarctica indicate that the biosphere represented a net source of atmospheric CO2 prior to 1940, switching subsequently to a net sink.
Yu Zhao, Shuxiao Wang, Chris P Nielsen, Xinghua Li, and Jiming Hao. 2010. “Establishment of a database of emission factors for atmospheric pollutant emissions from Chinese coal-fired power plants.” Atmospheric Environment, 44, 12, Pp. 1515-1523. Publisher's VersionAbstract
Field measurements and data investigations were conducted for developing an emission factor database for inventories of atmospheric pollutants from Chinese coal-fired power plants. Gaseous pollutants and particulate matter (PM) of different size fractions were measured using a gas analyzer and an electric low-pressure impactor (ELPI), respectively, for ten units in eight coal-fired power plants across the country. Combining results of field tests and literature surveys, emission factors with 95% confidence intervals (CIs) were calculated by boiler type, fuel quality, and emission control devices using bootstrap and Monte Carlo simulations. The emission factor of uncontrolled SO2 from pulverized combustion (PC) boilers burning bituminous or anthracite coal was estimated to be 18.0S kg t−1 (i.e., 18.0 × the percentage sulfur content of coal, S) with a 95% CI of 17.2S–18.5S. NOX emission factors for pulverized-coal boilers ranged from 4.0 to 11.2 kg t−1, with uncertainties of 14–45% for different unit types. The emission factors of uncontrolled PM2.5, PM10, and total PM emitted by PC boilers were estimated to be 0.4A (where A is the percentage ash content of coal), 1.5A and 6.9A kg t−1, respectively, with 95% CIs of 0.3A–0.5A, 1.1A–1.9A and 5.8A–7.9A. The analogous PM values for emissions with electrostatic precipitator (ESP) controls were 0.032A (95% CI: 0.021A–0.046A), 0.065A (0.039A–0.092A) and 0.094A (0.0656A–0.132A) kg t−1, and 0.0147A (0.0092–0.0225A), 0.0210A (0.0129A–0.0317A), and 0.0231A (0.0142A–0.0348A) for those with both ESP and wet flue-gas desulfurization (wet-FGD). SO2 and NOX emission factors for Chinese power plants were smaller than those of U.S. EPA AP-42 database, due mainly to lower heating values of coals in China. PM emission factors for units with ESP, however, were generally larger than AP-42 values, because of poorer removal efficiencies of Chinese dust collectors. For units with advanced emission control technologies, more field measurements are needed to reduce emission factor uncertainties.

Pages