Environmental Health

Peter Sherman, Haiyang Lin, and Michael B. McElroy. 2022. “Projected global demand for air conditioning associated with extreme heat and implications for electricity grids in poorer countries.” Energy and Buildings, 268, August, Pp. 112198. Publisher's VersionAbstract

Human-induced climate change will increase surface temperatures globally over the next several decades. Climate models project that global mean surface temperature could increase by over 2˚C by 2050 relative to the preindustrial period, with even greater changes at the regional level. These temperature changes have clear and pertinent implications for extremes, and consequentially, heat-induced health issues for people living in particularly hot climates. Here, we study future projections in the demand for AC globally in the 2050s associated with extreme heat events. To do this, we employ an ensemble of CMIP6 models under high and low emissions scenarios. We find that the increasing frequency of extreme temperatures will cause a significant portion of the global population to be exposed to conditions that require cooling. This issue will be especially pervasive in poor countries such as India and Indonesia, which at present lack the AC units required to handle rapidly growing populations and increased frequencies of extreme temperatures. The electricity needed for cooling in these countries could reach as high as 75% of the current total annual electricity demand, which could place serious strain on the electricity grid infrastructure during peak cooling hours. We conclude that demand for cooling in the future will pose a significant challenge for poorer countries whose people will require AC units to handle extreme temperatures. In some countries, the grid infrastructure is insufficient at present to meet projected AC demands, and this need must be considered in future power systems planning.

Rong Tang, Jing Zhao, Yifan Liu, Xin Huang, Yanxu Zhang, Derong Zhou, Aijun Ding, Chris Nielsen, and Haikun Wang. 2022. “Air quality and health co-benefits of China's carbon dioxide emissions peaking before 2030.” Nature Communications, 13, 1008. Publisher's VersionAbstract

Recent evidence shows that carbon emissions in China are likely to peak ahead of 2030. However, the social and economic impacts of such an early carbon peak have rarely been assessed. Here we focus on the economic costs and health benefits of different carbon mitigation pathways, considering both possible socio-economic futures and varying ambitions of climate policies. We find that an early peak before 2030 in line with the 1.5  C target could avoid ~118,000 and ~614,000 PM2.5 attributable deaths under the Shared Socioeconomic Pathway 1, in 2030 and 2050, respectively. Under the 2  C target, carbon mitigation costs could be more than offset by health co-benefits in 2050, bringing a net benefit of $393–$3,017 billion (in 2017 USD value). This study not only provides insight into potential health benefits of an early peak in China, but also suggests that similar benefits may result from more ambitious climate targets in other countries.

Shaodan Huang, Shaojie Song, Chris P. Nielsen, Yuqiang Zhang, Jianyin Xiong, Louise B. Weschler, Shaodong Xie, and Jing Li. 2022. “Residential building materials: An important source of ambient formaldehyde in mainland China.” Environment International, 158, 106909. Publisher's VersionAbstract
This study investigates the contribution of formaldehyde from residential building materials to ambient air in mainland China. Based on 265 indoor field tests in 9 provinces, we estimate that indoor residential sources are responsible for 6.66% of the total anthropogenic formaldehyde in China’s ambient air (range for 31 provinces: 1.88–18.79%). Residential building materials rank 6th among 81 anthropogenic sources (range: 2nd–10th for 31 provinces). Emission intensities show large spatial variability between and within regions due to different residential densities, emission characteristics of building materials, and indoor thermal conditions. Our findings indicate that formaldehyde from the indoor environment is a significant source of ambient formaldehyde, especially in urban areas. This study will help to more accurately evaluate exposure to ambient formaldehyde and its related pollutants, and will assist in formulating policies to protect air quality and public health.
Yan Zhang, Yu Zhao, Meng Gao, Xin Bo, and Chris P. Nielsen. 2021. “Air quality and health benefits from ultra-low emission control policy indicated by continuous emission monitoring: a case study in the Yangtze River Delta region, China.” Atmospheric Chemistry and Physics, 21, Pp. 6411–6430. Publisher's VersionAbstract
To evaluate the improved emission estimates from online monitoring, we applied the Models-3/CMAQ (Community Multiscale Air Quality) system to simulate the air quality of the Yangtze River Delta (YRD) region using two emission inventories with and without incorporated data from continuous emission monitoring systems (CEMSs) at coal-fired power plants (cases 1 and 2, respectively). The normalized mean biases (NMBs) between the observed and simulated hourly concentrations of SO2, NO2, O3, and PM2.5 in case 2 were −3.1 %, 56.3 %, −19.5 %, and −1.4 %, all smaller in absolute value than those in case 1 at 8.2 %, 68.9 %, −24.6 %, and 7.6 %, respectively. The results indicate that incorporation of CEMS data in the emission inventory reduced the biases between simulation and observation and could better reflect the actual sources of regional air pollution. Based on the CEMS data, the air quality changes and corresponding health impacts were quantified for different implementation levels of China's recent “ultra-low” emission policy. If the coal-fired power sector met the requirement alone (case 3), the differences in the simulated monthly SO2, NO2, O3, and PM2.5 concentrations compared to those of case 2, our base case for policy comparisons, would be less than 7 % for all pollutants. The result implies a minor benefit of ultra-low emission control if implemented in the power sector alone, which is attributed to its limited contribution to the total emissions in the YRD after years of pollution control (11 %, 7 %, and 2 % of SO2, NOX, and primary particle matter (PM) in case 2, respectively). If the ultra-low emission policy was enacted at both power plants and selected industrial sources including boilers, cement, and iron and steel factories (case 4), the simulated SO2, NO2, and PM2.5concentrations compared to the base case would be 33 %–64 %, 16 %–23 %, and 6 %–22 % lower, respectively, depending on the month (January, April, July, and October 2015). Combining CMAQ and the Integrated Exposure Response (IER) model, we further estimated that 305 deaths and 8744 years of life loss (YLL) attributable to PM2.5 exposure could be avoided with the implementation of the ultra-low emission policy in the power sector in the YRD region. The analogous values would be much higher, at 10 651 deaths and 316 562 YLL avoided, if both power and industrial sectors met the ultra-low emission limits. In order to improve regional air quality and to reduce human health risk effectively, coordinated control of multiple sources should be implemented, and the ultra-low emission policy should be substantially expanded to major emission sources in industries other than the power industry.

Pages