Policy

Haikun Wang, Xiaojing He, Xinyu Liang, Ernani F. Choma, Yifan Liu, Li Shan, Haotian Zheng, Shaojun Zhang, Chris Nielsen, Shuxiao Wang, Ye Wu, and John Evans. 2020. “Health benefits of on-road transportation pollution control programs in China.” Proceedings of the National Academy of Sciences, Sept 2020, 201921271. Publisher's VersionAbstract
China started to implement comprehensive measures to mitigate traffic pollution at the end of 1990s, but the comprehensive effects, especially on ambient air quality and public health, have not yet been systematically evaluated. In this study, we analyze the effects of vehicle emission control measures on ambient air pollution and associated deaths attributable to long-term exposures of fine particulate matter (PM2.5) and O3 based on an integrated research framework that combines scenario analysis, air quality modeling, and population health risk assessment. We find that the total impact of these control measures was substantial. Vehicular emissions during 1998–2015 would have been 2–3 times as large as they actually were, had those measures not been implemented. The national population-weighted annual average concentrations of PM2.5 and O3 in 2015 would have been higher by 11.7 μg/m3 and 8.3 parts per billion, respectively, and the number of deaths attributable to 2015 air pollution would have been higher by 510 thousand (95% confidence interval: 360 thousand to 730 thousand) without these controls. Our analysis shows a concentration of mortality impacts in densely populated urban areas, motivating local policymakers to design stringent vehicle emission control policies. The results imply that vehicle emission control will require policy designs that are more multifaceted than traditional controls, primarily represented by the strict emission standards, with careful consideration of the challenges in coordinated mitigation of both PM2.5 and O3 in different regions, to sustain improvement in air quality and public health given continuing swift growth in China’s vehicle population.
2019 Dec 05

Opportunities and Challenges in China's Carbon Market: From Model to Reality

3:45pm to 5:00pm

Location: 

Pierce 100F, 29 Oxford Street, Cambridge

A Harvard-China Project Research Seminar with Cecilia Han Springer, Postdoctoral Research Fellow, Environment and Natural Resources and Science, Technology and Public Policy, Harvard Kennedy School

Please note the start time of 3:45pm

Abstract: Can China's policies promote economic growth and environmental protection at the same time? I examine the economy vs. environment dichotomy in Chinese...

Read more about Opportunities and Challenges in China's Carbon Market: From Model to Reality
Jing Cao, Mun S. Ho, Dale W. Jorgenson, and Chris P. Nielsen. 2019. “China’s emissions trading system and an ETS-carbon tax hybrid.” Energy Economics, 81, Pp. 741-753. Publisher's VersionAbstract
China is introducing a national carbon emission trading system (ETS), with details yet to be finalized. The ETS is expected to cover only the major emitters but it is often argued that a more comprehensive system will achieve the emission goals at lower cost. We first examine an ETS that covers both electricity and cement sectors and consider an ambitious cap starting in 2017 that will meet the official objective to reduce the carbon-GDP intensity by 60-65% by 2030 compared to 2005 levels. The two ETS-covered industries are compensated with an output-based subsidy to represent the intention to give free permits to the covered enterprises. We then consider a hybrid system where the non-ETS sectors pay a carbon tax and share in the CO2 reduction burden. Our simulations indicate that hybrid systems will achieve the same CO2 goals with lower permit prices and GDP losses. We also show how auctioning of the permits improves the efficiency of the ETS and the hybrid systems. Finally, we find that these CO2 control policies are progressive in that higher incomes households bear a bigger burden.
China’s CO2 peak before 2030 implied from diverse characteristics and growth of cities
Haikun Wang, Xi Lu, Yu Deng, Yaoguang Sun, Chris P. Nielsen, Yifan Liu, Ge Zhu, Maoliang Bu, Jun Bi, and Michael B. McElroy. 2019. “China’s CO2 peak before 2030 implied from diverse characteristics and growth of cities.” Nature Sustainability, 2, Pp. 748–754. Publisher's VersionAbstract

China pledges to peak CO2 emissions by 2030 or sooner under the Paris Agreement to limit global warming to 2 °C or less by the end of the century. By examining CO2 emissions from 50 Chinese cities over the period 2000–2016, we found a close relationship between per capita emissions and per capita gross domestic product (GDP) for individual cities, following the environmental Kuznets curve, despite diverse trajectories for CO2 emissions across the cities. Results show that carbon emissions peak for most cities at a per capita GDP (in 2011 purchasing power parity) of around US$21,000 (80% confidence interval: US$19,000 to 22,000). Applying a Monte Carlo approach to simulate the peak of per capita emissions using a Kuznets function based on China’s historical emissions, we project that emissions for China should peak at 13–16 GtCO2 yr−1 between 2021 and 2025, approximately 5–10 yr ahead of the current Paris target of 2030. We show that the challenges faced by individual types of Chinese cities in realizing low-carbon development differ significantly depending on economic structure, urban form and geographical location.

2019 Sep 05

Walking Culture in China

3:00pm

Location: 

Gund Hall, Room 121, Harvard Graduate School of Design, 42-28 Quincy Street

A dissertation defense by Yingying Lu, a Harvard Graduate School of Design doctoral candidate and incoming researcher of the Harvard-China Project.

Abstract: Walking brings wide-ranging health benefits to individuals (Hanson & Jones, 2015) and increases social interaction as well (Talen & Koschinsky, 2013). Walking, as a sustainable transportation mode, can contribute to the urban environment by saving transportation energy...

Read more about Walking Culture in China
BRI Map

Solar Energy Could Turn the Belt and Road Initiative Green

June 27, 2019

Researchers quantify the region's renewable energy potential

The region covered by the Belt and Road Initiative (BRI) has significant potential to be powered by solar energy, researchers report June 27 in the journal Joule. Less than 4 percent of the maximum solar potential of the region could meet the BRI's electricity demand for 2030. The research suggests a possible solution to reduce BRI countries' need for fossil fuels as they develop. This is the first time the renewable energy potential of the region is quantified.

The Chinese...

Read more about Solar Energy Could Turn the Belt and Road Initiative Green
2019 Jun 01

CCICED Annual Meeting

Sat Jun 1 (All day) to Wed Jun 5 (All day)

Location: 

Hangzhou International Expo Center, Zhejiang Province, China

China Project faculty chair, Michael McElroy, who has been appointed to the China Council for International Cooperation on Environment and Development (CCICED) for a 5-year term, and Executive Director, Chris Nielsen, will be participating in the ...

Read more about CCICED Annual Meeting

Pages