Transportation & Urban Environment

Yanxia Zhang, Haikun Wang, Sai Liang, Ming Xu, Qiang Zhang, Hongyan Zhao, and Jun Bi. 2015. “A dual strategy for controlling energy consumption and air pollution in China's metropolis of Beijing.” Energy, 81, 1 March, Pp. 294-303. Publisher's VersionAbstract

It is critical to alleviate problems of energy and air pollutant emissions in a metropolis because these areas serve as economic engines and have large and dense populations. Drivers of fossil fuel use and air pollutants emissions were analyzed in the metropolis of Beijing during 1997-2010. The analyses were conducted from both a bottom-up and a top-down perspective based on the sectoral inventories and structural decomposition analysis (SDA). From a bottom-up perspective, the key energy-intensive industrial sectors directly caused the variations in Beijing's air pollution by means of a series of energy and economic policies. From a top-down perspective, variations in production structures caused increases in most materials during 2000-2010, but there were decreases in PM10 and PM2.5 emissions during 2005-2010. Population growth was found to be the largest driver of energy consumption and air pollutant emissions during 1997-2010. This finding suggests that avoiding rapid population growth in Beijing could simultaneously control energy consumption and air pollutant emissions. Mitigation policies should consider not only the key industrial sectors but also socioeconomic drivers to co-reduce energy consumption and air pollution in China's metropolis.

Xiannuan Lin and Karen R. Polenske. 1998. “Energy use and air-pollution impacts of China’s transportation growth.” In Energizing China: Reconciling Environmental Protection and Economic Growth, edited by Michael B. McElroy, Chris P Nielsen, Peter Lydon, and eds.. Cambridge, MA: HUCE/Harvard University Press. Publisher's VersionAbstract

As China develops its booming, fossil fuel-powered economy, is it taking lessons from the history of Western industrialization and the unforeseen environmental harms that accompanied it? Given the risks of climate change, is there an imperative, shared responsibility to help China respond to the environmental effects of its coal dependence? By linking global hazards to local air pollution concerns—from indoor stove smoke to burgeoning ground-level ozone—this volume of eighteen studies seeks integrated strategies to address simultaneously a range of harmful emissions. Counterbalancing the scientific inquiry are key chapters on China’s unique legal, institutional, political, and cultural factors in effective pollution control.

Energizing China, the stage-setting publication of an ongoing program of Harvard–China research collaboration, is distinguished by its conceptual breadth and spirit of exchange. Its contributors include twenty-two Western and seventeen Chinese scholars with a disciplinary reach that includes science, public health, engineering, economics, public policy, law, business, and China studies.

Peter Rogers and Sumeeta Srinivasan. 2008. “Comparing sustainable cities—Examples from China, India and the USA.” In Sustainable urban development in China: Wishful thinking or reality?, edited by Marco Keiner. Munster, Germany: Verlagshaus Monsenstein und Vannerdat OHG. Publisher's VersionAbstract
Due to an unprecedented economic
growth, fuelled by a pro-growth policy,
China’s cities are mushrooming.

In the coming years, the mass migration
from rural to urban areas will continue.

The demand for energy and resources will
continue to rise.

China’s cities will increasingly contribute
to global warming and the depletion of
the environment.

The crucial question is: Can urban development
in China become sustainable?
Yu Deng and Sumeeta Srinivasan. 2016. “Urban land use change and regional access: A case study in Beijing, China.” Habitat International, 51, February, Pp. 103-113. Publisher's VersionAbstract

In the recent past Beijing has experienced rapid development. This growth has been accompanied by many problems including traffic congestion and air pollution. Understanding what stimulates urban growth is important for sustainable development in the coming years. In this paper, we first estimate a binary auto-logistic model of land use change, using physical and socioeconomic characteristics of the location and its access to major centers within the city as predictors. We find that variables determining regional access, like time distance to the city center, the Central Business District (CBD), industrial centers, employment centers, and the transportation system, significantly impact urban land conversion. By using measures of access to predict land use change we believe that we can better understand the planning implications of urban growth not only in Beijing but other rapidly developing cities.

Rui Wang. 2011. “Autos, transit and bicycles: Comparing the costs in large Chinese cities.” Transport Policy, 18, 1, Pp. 139-146. Publisher's VersionAbstract
This study compares the full costs of seven passenger modes in the large Chinese cities facing the difficult yet crucial choice among alternative passenger transportation systems. The seven modes are evaluated at varied traffic volumes in hypothetical radial and circumferential commuting corridors. Using detailed estimates of private and social costs, the full cost of each mode is minimized by optimizing infrastructure investment and operation plans. On all corridors and across different scenarios, commuting by one or more forms of bus transit or bicycle costs less than automobile or rail. Nonetheless, in circumferential corridors, rail can be almost as cost-effective as bus under certain conditions, and bicycle can be less cost-effective than bus in some cases. Unlike results from similar studies conducted in the US, automobile commuting does not cost less than bus transportation at low traffic volumes.
Chris P Nielsen and Michael B. McElroy. 1998. “Introduction and overview.” In Energizing China: Reconciling Environmental Protection and Economic Growth, edited by Michael B. McElroy, Chris P. Nielsen, and Peter Lydon. Cambridge, MA: HUCE/Harvard University Press. Publisher's VersionAbstract

As China develops its booming, fossil fuel-powered economy, is it taking lessons from the history of Western industrialization and the unforeseen environmental harms that accompanied it? Given the risks of climate change, is there an imperative, shared responsibility to help China respond to the environmental effects of its coal dependence? By linking global hazards to local air pollution concerns—from indoor stove smoke to burgeoning ground-level ozone—this volume of eighteen studies seeks integrated strategies to address simultaneously a range of harmful emissions. Counterbalancing the scientific inquiry are key chapters on China’s unique legal, institutional, political, and cultural factors in effective pollution control.

Energizing China, the stage-setting publication of an ongoing program of Harvard–China research collaboration, is distinguished by its conceptual breadth and spirit of exchange. Its contributors include twenty-two Western and seventeen Chinese scholars with a disciplinary reach that includes science, public health, engineering, economics, public policy, law, business, and China studies.

Rong Xie, Clive E. Sabel, Xi Lu, Weimo Zhu, Haidong Kan, Chris P. Nielsen, and Haikun Wang. 2016. “Long-term trend and spatial pattern of PM2.5-induced premature mortality in China.” Environment International, 97, Pp. 180-186. Publisher's VersionAbstract

With rapid economic growth, China has witnessed increasingly frequent and severe haze and smog episodes over the past decade, posing serious health impacts to the Chinese population, especially those in densely populated city clusters. Quantification of the spatial and temporal variation of health impacts attributable to ambient fine particulate matter (PM2.5) has important implications for China's policies on air pollution control. In this study, we evaluated the spatial distribution of premature deaths in China between 2000 and 2010 attributable to ambient PM2.5 in accord with the Global Burden of Disease based on a high resolution population density map of China, satellite retrieved PM2.5 concentrations, and provincial health data. Our results suggest that China's anthropogenic ambient PM2.5 led to 1,255,400 premature deaths in 2010, 42% higher than the level in 2000. Besides increased PM2.5 concentration, rapid urbanization has attracted large population migration into the more developed eastern coastal urban areas, intensifying the overall health impact. In addition, our analysis implies that health burdens were exacerbated in some developing inner provinces with high population density (e.g. Henan, Anhui, Sichuan) because of the relocation of more polluting and resource-intensive industries into these regions. In order to avoid such national level environmental inequities, China's regulations on PM2.5 should not be loosened in inner provinces. Furthermore policies should create incentive mechanisms that can promote transfer of advanced production and emissions control technologies from the coastal regions to the interior regions.

Sumeeta Srinivasan. 2010. “Linking travel behavior and location in Chengdu, China: A geographically weighted approach.” Transportation Research Record, 2193, Pp. 85-95. Publisher's VersionAbstract
This study uses geographically weighted regressions and multilevel models to understand the implications of location and attitudinal characteristics for travel behavior in Chengdu, China. In particular, the estimated distance traveled and the mode choice of nonmotorized versus motorized vehicles for work- and school-related trips were examined by using a recent household trip diary data set. The results suggest that location characteristics may be influential in the prediction of travel behavior but cannot be fully captured by simple categorization such as inner ring location versus peripheral location. Variations in travel behavior can be related to socioeconomic and location variables in ways that vary by location in a complex manner. Policy makers should therefore reconsider the role that location and attitudinal implications may play in meeting travel demand in rapidly developing cities like Chengdu.
Sumeeta Srinivasan and Peter P. Rogers. 2005. “Travel behavior of low-income residents: Studying two contrasting locations in the city of Chennai, India.” Journal of Transport Geography, 13, 3, Pp. 265-274. Publisher's VersionAbstract
Data on travel behavior in developing countries like India is minimal. This is especially true for the relatively poor residents of urban India. They are dependent on fewer options for transportation and have little choice in terms of employment location given their dependence on walking or bicycles. This is significant in cities like Chennai because employment is highly concentrated in the center of the city. In this study, the results of a survey of 70 households in Chennai were analyzed to estimate statistical models of travel behavior with respect to mode choice and trip frequency. The households were located in two different parts of the city: one group of households lived close to the city center (in a settlement called Srinivasapuram) and the other at the periphery (in a location called Kannagi Nagar). We analyze the differences in travel behavior due to differences in accessibility to employment and services between the two settlement locations. The results indicate that differences in accessibility appear to strongly affect travel behavior. Residents in the centrally located settlement were more likely to use non-motorized modes for travel (walk or bicycle) than the peripherally located residents. It is vital therefore that, policy makers in India consider location of employment in the planning of new housing for low-income households.
Xinyu Chen, Xi Lu, Michael B. McElroy, Chris P Nielsen, and Chongqing Kang. 2014. “Synergies of wind power and electrified space heating: A case study for Beijing.” Environmental Science & Technology, 48, 3, Pp. 2016–2024. Publisher's VersionAbstract

Demands for electricity and energy to supply heat are expected to expand by 71% and 47%, respectively, for Beijing in 2020 relative to 2009. If the additional electricity and heat are supplied solely by coal as is the current situation, annual emissions of CO2 may be expected to increase by 59.6% or 99 million tons over this interval. Assessed against this business as usual (BAU) background, the present study indicates that significant reductions in emissions could be realized using wind-generated electricity to provide a source of heat, employed either with heat pumps or with electric thermal storage (ETS) devices. Relative to BAU, reductions in CO2 with heat pumps assuming 20% wind penetration could be as large as 48.5% and could be obtained at a cost for abatement of as little as $15.6 per ton of avoided CO2. Even greater reductions, 64.5%, could be realized at a wind penetration level of 40% but at a higher cost, $29.4 per ton. Costs for reduction of CO2 using ETS systems are significantly higher, reflecting the relatively low efficiency for conversion of coal to power to heat.

Tao Song, Jian-ming Cai, Teresa Chahine, Hui Xu, and Fang-qu Niu. 2014. “Modeling urban metabolism of Beijing city, China, with coupled system dynamics: Emergy model.” Stochastic Environmental Research and Risk Assessment, 28, 6, Pp. 1511-1524. Publisher's VersionAbstract

Chinese cities are plagued by the rise in resource and energy input and output over the last decade. At the same time, the scale and pace of economic development sweeping across Chinese cities have revived the debate about urban metabolisms, which could be simply seen as the ratio of output to resource and energy input in urban systems. In this study, an emergy (meaning the equivalent solar energy) accounting, sustainable indices of urban metabolisms, and an urban metabolic system dynamics model, are developed in support of the research task on Chinese cities ‘metabolisms and their related policies. The dynamic simulation model used in the paper is capable of synthesizing component-level knowledge into system behavior simulation at an integrated level, which is directly useful for simulating and evaluating a variety of decision actions and their dynamic consequences. For the study case, interactions among a number of Beijing’s urban emergy components within a time frame of 20 years (from 2010 to 2030) are examined dynamically. Six alternative policy scenarios are implemented into the system simulation. Our results indicate that Beijing’s current model of urban metabolism—tertiary industry oriented development mode—would deliver prosperity to the city. However, the analysis also shows that this mode of urban metabolism would weaken urban self-support capacity due primarily to the large share of imported and exported emergy in the urban metabolic system. The keys of improving the efficiency of urban metabolism include the priority on the renewable resource and energy, increase in environmental investment and encouragement on innovative technologies of resource and energy utilization, et al.

Karolin Kokaz and Peter P. Rogers. 2002. “Urban transportation planning for air quality management: Case study of Delhi, India, and role of social and economic costs in welfare maximization of mobility choice.” Transportation Research Record, 1817, Pp. 42-49. Publisher's VersionAbstract
Recent economic expansion and population growth in developing countries have had a big impact on the development of large cities like Delhi, India. Accompanied by Delhi's rapid spatial growth over the last 25 years, urban sprawl has contributed to increased travel. The vehicle fleet projected at current growth rates will result in more than 13 million vehicles in Delhi in 2020. Planning and managing such a rapidly growing transport sector will be a challenge. Choices made now will have effects lasting well into the middle of the century. With such rapid transport growth rates, automobile emissions have become the fastest increasing source of urban air pollution. In India, most urban areas, including Delhi, already have major air pollution problems that could be greatly exacerbated if growth of the transport sector is managed unwisely. The transport plans designed to meet such large increases in travel demand will have to emphasize the movement of people, not vehicles, for a sustainable transportation system. Therefore, a mathematical model was developed to estimate the optimal transportation mix to meet this projected passenger-km demand while satisfying environmental goals, reducing congestion levels, and improving system and fuel efficiencies by exploiting a variety of policy options at the minimum overall cost or maximum welfare from transport. The results suggest that buses will continue to satisfy most passenger transport in the coming decades, so planning done in accordance with improving bus operations is crucial.
Yuxuan Wang, Jiming Hao, Michael B. McElroy, J. William Munger, Hong Ma, Dan Chen, and Chris P Nielsen. 2009. “Ozone air quality during the 2008 Beijing Olympics: Effectiveness of emission restrictions.” Atmospheric Chemistry and Physics, 9, 14, Pp. 5237-5251. Publisher's VersionAbstract
A series of aggressive measures was launched by the Chinese government to reduce pollutant emissions from Beijing and surrounding areas during the Olympic Games. Observations at Miyun, a rural site 100 km downwind of the Beijing urban center, show significant decreases in concen-trations of O3, CO, NOy, and SO2 during August 2008, rel-ative to August 2006–2007. The mean daytime mixing ratio of O3 was lower by about 15 ppbv, reduced to 50 ppbv, in August 2008. The relative reductions in daytime SO2, CO, and NOy were 61%, 25%, and 21%, respectively. Changes in SO2 and in species correlations from 2007 to 2008 indicate that emissions of SO2, CO, and NOx were reduced at least by 60%, 32%, and 36%, respectively, during the Olympics. Analysis of meteorological conditions and interpretation of observations using a chemical transport model suggest that although the day-to-day variability in ozone is driven mostly by meteorology, the reduction in emissions of ozone pre-cursors associated with the Olympic Games had a signifi-cant contribution to the observed decrease in O3 during Au-gust 2008, accounting for 80% of the O3 reduction for the month as a whole and 45% during the Olympics Period (8–24 August). The model predicts that emission restrictions such as those implemented during the Olympics can affect O3 far beyond the Beijing urban area, resulting in reductions in boundary layer O3 of 2–10 ppbv over a large region of the North China Plain and Northeastern China.

Pages