Transportation & Urban Planning

Chenghe Guan, Jihoon Song, Michael Keith, Yuki Akiyama, Ryosuke Shibasaki, and Taisei Sato. 2020. “Delineating urban park catchment areas using mobile phone data: A case study of Tokyo.” Computers, Environment and Urban Systems, 81, May, Pp. 101474. Publisher's VersionAbstract
Urban parks can offer both physical and psychological health benefits to urban dwellers and provide social, economic, and environmental benefits to society. Earlier research on the usage of urban parks relied on fixed distance or walking time to delineate urban park catchment areas. However, actual catchment areas can be affected by many factors other than park surface areas, such as social capital cultivation, cultural adaptation, climate and seasonal variation, and park function and facilities provided. This study advanced this method by using mobile phone data to delineate urban park catchment area. The study area is the 23 special wards of Tokyo or tokubetsu-ku, the core of the capital of Japan. The location data of over 1 million anonymous mobile phone users was collected in 2011. The results show that: (1) the park catchment areas vary significantly by park surface areas: people use smaller parks nearby but also travel further to larger parks; (2) even for the parks in the same size category, there are notable differences in the spatial pattern of visitors, which cannot be simply summarized with average distance or catchment radius; and (3) almost all the parks, regardless of its size and function, had the highest user density right around the vicinity, exemplified by the density-distance function closely follow a decay trend line within 1-2 km radius of the park. As such, this study used the density threshold and density-distance function to measure park catchment. We concluded that the application of mobile phone location data can improve our understanding of an urban park catchment area, provide useful information and methods to analyze the usage of urban parks, and can aid in the planning and policy-making of urban parks.
Chenghe Guan, Sumeeta Srinivasan, and Chris P. Nielsen. 2019. “Does neighborhood form influence low-carbon transportation in China?” Transportation Research Part D: Transport and Environment, 67, February, Pp. 406-420. Publisher's VersionAbstract
Developing less auto-dependent urban forms and promoting low-carbon transportation (LCT) are challenges facing our cities. Previous literature has supported the association between neighborhood form and low-carbon travel behaviour. Several studies have attempted to measure neighborhood forms focusing on physical built-environment factors such as population and employment density and socio-economic conditions such as income and race. We find that these characteristics may not be sufficiently fine-grained to differentiate between neighborhoods in Chinese cities. This research assesses characteristics of neighborhood spatial configuration that may influence the choice of LCT modes in the context of dense Chinese cities. Urban-form data from 40 neighborhoods in Chengdu, China, along with a travel behaviour survey of households conducted in 2016, were used to generate several measures of land use diversity and accessibility for each neighborhood. We use principle component analysis (PCA) to group these variables into dimensions that could be used to classify the neighborhoods. We then estimate regression models of low-carbon mode choices such as walking, bicycling, and transit to better understand the significance of these built-environment differences at the neighbourhood level. We find that, first, members of households do choose to walk or bike or take transit to work provided there is relatively high population density and sufficient access to public transit and jobs. Second, land-use diversity alone was not found to be significant in affecting LCT mode choice. Third, the proliferation of gated communities was found to reduce overall spatial connectivity within neighborhoods and had a negative effect on choice of LCT.
China’s CO2 peak before 2030 implied from diverse characteristics and growth of cities
Haikun Wang, Xi Lu, Yu Deng, Yaoguang Sun, Chris P. Nielsen, Yifan Liu, Ge Zhu, Maoliang Bu, Jun Bi, and Michael B. McElroy. 2019. “China’s CO2 peak before 2030 implied from diverse characteristics and growth of cities.” Nature Sustainability, 2, Pp. 748–754. Publisher's VersionAbstract

China pledges to peak CO2 emissions by 2030 or sooner under the Paris Agreement to limit global warming to 2 °C or less by the end of the century. By examining CO2 emissions from 50 Chinese cities over the period 2000–2016, we found a close relationship between per capita emissions and per capita gross domestic product (GDP) for individual cities, following the environmental Kuznets curve, despite diverse trajectories for CO2 emissions across the cities. Results show that carbon emissions peak for most cities at a per capita GDP (in 2011 purchasing power parity) of around US$21,000 (80% confidence interval: US$19,000 to 22,000). Applying a Monte Carlo approach to simulate the peak of per capita emissions using a Kuznets function based on China’s historical emissions, we project that emissions for China should peak at 13–16 GtCO2 yr−1 between 2021 and 2025, approximately 5–10 yr ahead of the current Paris target of 2030. We show that the challenges faced by individual types of Chinese cities in realizing low-carbon development differ significantly depending on economic structure, urban form and geographical location.

2019 Nov 14

Driving and the Built Environment: Is Transit-Oriented Development Effective in Shanghai?

3:30pm to 4:45pm

Location: 

Pierce 100F, 29 Oxford Street, Cambridge

A Harvard-China Project Research Seminar with Faan Chen, Postdoctoral Fellow, Harvard-China Project, Paulson School of Engineering and Applied Sciences, Harvard University

Abstract: The rapid growth of cities such as Shanghai in China has presented many transportation, land use and climate change challenges for local government officials, planning and transit practitioners and property...

Read more about Driving and the Built Environment: Is Transit-Oriented Development Effective in Shanghai?
Jing Cao, Mun S Ho, and Wenhao Hu. 2019. “Energy consumption of urban households in China.” China Economic Review, 58, 101343. Publisher's VersionAbstract
We estimate China urban household energy demand as part of a complete system of consumption demand so that it can be used in economy-wide models. This allows us to derive cross-price elasticities unlike studies which focus on one type of energy. We implement a two-stage approach and explicitly account for electricity, domestic fuels and transportation demand in the first stage and gasoline, coal, LPG and gas demand in the second stage. We find income inelastic demand for electricity and home energy, but the elasticity is higher than estimates in the rich countries. Demand for total transportation is income elastic. The price elasticity for electricity is estimated to be −0.5 and in the range of other estimates for China, and similar to long-run elasticities estimated for the U.S.
Sumeeta Srinivasan, Chenghe Guan, and Chris P. Nielsen. 2019. “Built environment, income and travel behavior: Change in the city of Chengdu 2005-2016.” International Journal of Sustainable Transportation, 14, 10, Pp. 749-760. Publisher's VersionAbstract
In this paper, we look at differences in travel behavior and location characteristics across income in Chengdu, China at two points of time, 2005 and 2016, using household travel surveys. Specifically, we compare changes over time for different income groups for Chengdu in 2005 and 2016. We find that walking or biking remains the most common mode for all income groups but higher-income households appear to have more choices depending on the proximity of their neighborhood to downtown. We also find that both average local and average regional access have worsened since 2005. Furthermore, it appears that there is less economic diversity within neighborhoods in 2016 when compared to 2005, with more locations appearing to have 40% or more of low-, middle-, or high-income households than in the past. Finally, we find that low-income households and older trip makers are more likely to walk or bike and that high-income households are the most likely to own cars and use motorized modes. Built environment characteristics like mixed land use appear to significantly reduce travel time in 2016 but do not result in higher non-motorized transport mode share. We contribute to existing literature by evaluating changes in the relationship of built environment and travel behavior during a period of rapid urbanization and economic growth in a Chinese city.
2019 Jun 01

CCICED Annual Meeting

Sat Jun 1 (All day) to Wed Jun 5 (All day)

Location: 

Hangzhou International Expo Center, Zhejiang Province, China

China Project faculty chair, Michael McElroy, who has been appointed to the China Council for International Cooperation on Environment and Development (CCICED) for a 5-year term, and Executive Director, Chris Nielsen, will be participating in the ...

Read more about CCICED Annual Meeting
2019 Mar 07

China and Asia in a Changing Climate: Natural Science for the Non-Scientist

12:15pm to 1:45pm

Location: 

CGIS South S020, Belfer Case Study Room, 1730 Cambridge St., Cambridge, MA

Panelists:

  • Professor John Holdren, Teresa and John Heinz Professor of Environmental Policy, Harvard Kennedy School (HKS) and Department of Earth and Planetary Sciences, Harvard University; Co-Director of Science, Technology, and Public Policy Program, HKS; former Science Advisor to President Barack Obama and former Director of the White House Office of Science and Technology Policy
  • Professor Peter Huybers, Department of Earth and Planetary Sciences, Harvard University, and Harvard John A. Paulson School of Engineering and Applied Sciences
  • Professor Elsie SunderlandGordon McKay Professor of Environmental Chemistry, Harvard John A. Paulson School of Engineering and Applied Sciences and Harvard T.H. Chan School of Public Health
  • Professor Steve Wofsy, Abbott Lawrence Rotch Professor of Atmospheric and Environmental Science, Department of Earth and Planetary Sciences, Harvard University, and Harvard John A. Paulson School of Engineering and Applied Sciences

Chair: Professor Mike McElroy, Gilbert Butler Professor of Environmental Studies, Department of Earth and Planetary Sciences, Harvard University, and Harvard John A. Paulson School of Engineering and Applied Sciences; Chair, Harvard-China Project on Energy, Economy and Environment... Read more about China and Asia in a Changing Climate: Natural Science for the Non-Scientist

Pages