Transportation & Urban Planning

Chenghe Guan, Michael Keith, and Andy Hong. 2019. “Designing walkable cities and neighborhoods in the era of urban big data.” Urban Planning International, 34, 5, Pp. 9-15. Publisher's VersionAbstract
In this paper, we discuss walkable cities from the perspective of urban planning and design in the era of digitalization and urban big data. We start with a brief review on historical walkable cities schemes; followed by a deliberation on what a walkable city is and what the spatial elements of a walkable city are; and a discussion on the emerging themes and empirical methods to measure the spatial and urban design features of a walkable city. The first part of this paper looks at key urban design propositions and how they were proposed to promote walkability. The second part of this paper discusses the concept of walkability, which is fundamental to designing a walkable city. We emphasize both the physical (walkways, adjacent uses, space) and the perceived aspects (safety, comfort, enjoyment), and then we look at the variety of spatial elements constituting a walkable city. The third part of this paper looks at the emerging themes for designing walkable cities and neighborhoods. We discuss the application of urban big data enabled by growing computational powers and related empirical methods and interdisciplinary approaches including spatial planning, urban design, urban ecology, and public health. This paper aims to provide a holistic approach toward understanding of urban design and walkability, re-evaluate the spatial elements to build walkable cities, and discuss future policy interventions.
2017 Nov 28

Film Screening of "Plastic China" and Q&A with Director WANG Jiuliang

6:30pm to 8:45pm

Location: 

CGIS South, Tsai Auditorium, 1730 Cambridge Street, Cambridge, MA

plastic china partial poster

After the screening, Director WANG Jiuliang will attend via Skype for a Q&A with the audience moderated by Professor ZHANG Ling of Boston College and the Fairbank Center for Chinese Studies. The discussion will be interpreted by Canaan Morse, a Ph.D. candidate in Chinese Literature at Harvard. ... Read more about Film Screening of "Plastic China" and Q&A with Director WANG Jiuliang

MEP meeting

High-Level Meetings with Ministers Xie and Li

August 30, 2017

On August 4, China’s lead official on climate change, Minister XIE Zhenhua, hosted a research and policy consultation with Profs. Mike McELROY, Steve WOFSY, executive director Chris NIELSEN, and Project alumni Dr. ZHANG Hongjun (Holland & Knight, LLP) and Prof. LU Xi (Tsinghua University) at his offices in Beijing. Discussion topics included the state of U.S.-China engagement on climate and the growing role of subnational governments, disparate regional capacities for carbon control within China... Read more about High-Level Meetings with Ministers Xie and Li

Nan Zhong, Jing Cao, and Yuzhu Wang. 2017. “Traffic congestion, ambient air pollution and health: Evidence from driving restrictions in Beijing.” Journal of the Association of Environmental and Resource Economists, 4, 3, Pp. 821–856. Publisher's VersionAbstract

Vehicles have recently overtaken coal to become the largest source of air pollution in urban China. Research on mobile sources of pollution has foundered due both to inaccessibility of Chinese data on health outcomes and strong identifying assumptions. To address these, we collect daily ambulance call data from the Beijing Emergency Medical Center and combine them with an idiosyncratic feature of a driving restriction policy in Beijing that references the last digit of vehicles’ license plate numbers. Because the number 4 is considered unlucky by many in China, it tends to be avoided on license plates. As a result, days on which the policy restricts license plates ending in 4 unintentionally allow more vehicles in Beijing. Leveraging this variation, we find that traffic congestion is indeed 22% higher on days banning 4 and that 24-hour average concentration of NO2 is 12% higher. Correspondingly, these short term increases in pollution increase ambulance calls by 12% and 3% for fever and heart related symptoms, while no effects are found for injuries. These findings suggest that traffic congestion has substantial health externalities in China but that they are also responsive to policy. 

Xinyu Chen, Xi Lu, Michael B. McElroy, Chris P Nielsen, and Chongqing Kang. 2014. “Synergies of wind power and electrified space heating: A case study for Beijing.” Environmental Science & Technology, 48, 3, Pp. 2016–2024. Publisher's VersionAbstract

Demands for electricity and energy to supply heat are expected to expand by 71% and 47%, respectively, for Beijing in 2020 relative to 2009. If the additional electricity and heat are supplied solely by coal as is the current situation, annual emissions of CO2 may be expected to increase by 59.6% or 99 million tons over this interval. Assessed against this business as usual (BAU) background, the present study indicates that significant reductions in emissions could be realized using wind-generated electricity to provide a source of heat, employed either with heat pumps or with electric thermal storage (ETS) devices. Relative to BAU, reductions in CO2 with heat pumps assuming 20% wind penetration could be as large as 48.5% and could be obtained at a cost for abatement of as little as $15.6 per ton of avoided CO2. Even greater reductions, 64.5%, could be realized at a wind penetration level of 40% but at a higher cost, $29.4 per ton. Costs for reduction of CO2 using ETS systems are significantly higher, reflecting the relatively low efficiency for conversion of coal to power to heat.

Tao Song, Jian-ming Cai, Teresa Chahine, Hui Xu, and Fang-qu Niu. 2014. “Modeling urban metabolism of Beijing city, China, with coupled system dynamics: Emergy model.” Stochastic Environmental Research and Risk Assessment, 28, 6, Pp. 1511-1524. Publisher's VersionAbstract

Chinese cities are plagued by the rise in resource and energy input and output over the last decade. At the same time, the scale and pace of economic development sweeping across Chinese cities have revived the debate about urban metabolisms, which could be simply seen as the ratio of output to resource and energy input in urban systems. In this study, an emergy (meaning the equivalent solar energy) accounting, sustainable indices of urban metabolisms, and an urban metabolic system dynamics model, are developed in support of the research task on Chinese cities ‘metabolisms and their related policies. The dynamic simulation model used in the paper is capable of synthesizing component-level knowledge into system behavior simulation at an integrated level, which is directly useful for simulating and evaluating a variety of decision actions and their dynamic consequences. For the study case, interactions among a number of Beijing’s urban emergy components within a time frame of 20 years (from 2010 to 2030) are examined dynamically. Six alternative policy scenarios are implemented into the system simulation. Our results indicate that Beijing’s current model of urban metabolism—tertiary industry oriented development mode—would deliver prosperity to the city. However, the analysis also shows that this mode of urban metabolism would weaken urban self-support capacity due primarily to the large share of imported and exported emergy in the urban metabolic system. The keys of improving the efficiency of urban metabolism include the priority on the renewable resource and energy, increase in environmental investment and encouragement on innovative technologies of resource and energy utilization, et al.

Karolin Kokaz and Peter P. Rogers. 2002. “Urban transportation planning for air quality management: Case study of Delhi, India, and role of social and economic costs in welfare maximization of mobility choice.” Transportation Research Record, 1817, Pp. 42-49. Publisher's VersionAbstract
Recent economic expansion and population growth in developing countries have had a big impact on the development of large cities like Delhi, India. Accompanied by Delhi's rapid spatial growth over the last 25 years, urban sprawl has contributed to increased travel. The vehicle fleet projected at current growth rates will result in more than 13 million vehicles in Delhi in 2020. Planning and managing such a rapidly growing transport sector will be a challenge. Choices made now will have effects lasting well into the middle of the century. With such rapid transport growth rates, automobile emissions have become the fastest increasing source of urban air pollution. In India, most urban areas, including Delhi, already have major air pollution problems that could be greatly exacerbated if growth of the transport sector is managed unwisely. The transport plans designed to meet such large increases in travel demand will have to emphasize the movement of people, not vehicles, for a sustainable transportation system. Therefore, a mathematical model was developed to estimate the optimal transportation mix to meet this projected passenger-km demand while satisfying environmental goals, reducing congestion levels, and improving system and fuel efficiencies by exploiting a variety of policy options at the minimum overall cost or maximum welfare from transport. The results suggest that buses will continue to satisfy most passenger transport in the coming decades, so planning done in accordance with improving bus operations is crucial.

Pages