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a b s t r a c t

Intra-city Public Charging Stations (PCSs) play a crucial role in promoting the mass deployment of
Electric Vehicles (EVs). To motivate the investment on PCSs, this work proposes a novel framework to
find the optimal location and size of PCSs, which can maximize the benefit of the investment. The im-
pacts of charging behaviors and urban land uses on the income of PCSs are taken into account. An agent-
based trip chain model is used to represent the travel and charging patterns of EV owners. A cell-based
geographic partition method based on Geographic Information System is employed to reflect the in-
fluence of land use on the dynamic and stochastic nature of EV charging behaviors. Based on the
distributed charging demand, the optimal location and size of PCSs are determined by mixed-integer
linear programming. V€asterås, a Swedish city, is used as a case study to demonstrate the model's
effectiveness. It is found that the charging demand served by a PCS is critical to its profitability, which is
greatly affected by the charging behavior of drivers, the location and the service range of PCS. Moreover,
charging price is another significant factor impacting profitability, and consequently the competitiveness
of slow and fast PCSs.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In recent years, the electrification of the transportation sector is
thriving. Electric Vehicles (EVs) have shown clear advantages, such
as environmental friendlyness, flexible operation, energy storage
etc. However, it must be noted that the transfer from internal
combustion engine vehicles to EVs should be accompanied by a
highly renewable energy mix in order to maximize the benefit. For
the fossil fuel dominated power production, indirect pollution still
exists [1]. In countries with high penetration of renewable energy,
different measures, such as tax reduction, subsidies, and extra local
benefits, e.g., free parking, have been implemented to motivate the
transition from petroleum-fueled vehicles to EVs [2]. Although EVs’
penetration is rapidly increasing, reaching 7.2 million units in 2020
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globally, EVs account for only a tiny market share [3,7].
Range anxiety is one of the most concerning issues for EV users

and potential owners [5], and intra-city Public Charging Stations
(PCSs) play a critical role in relieving range anxiety [6]. Recent years
have seen a rapid development of public EV charging infrastructure.
In 2019, the installed Publicly Accessible Chargers (PACs) reached
0.8 million in the world and accounted for an increasing share in
the total installed light-duty vehicle chargers [7]. However, the
number of installed PACs is far below the global EV stock. The un-
derdevelopment of PCSs is regarded as the most significant barrier
to EV penetration [8]. It is, therefore, essential to boost the intra-
city PCSs installation and motivate the associated investment.

Many efforts have been focused on optimizing the location and
size of intra-city PCSs. For example, Cavadas et al. [9] and Sun et al.
[10] conducted location optimization of PCSs based on residents'
travel behaviors to maximize satisfied charging demand with
constraints of a fixed budget. Xi et al. [11] and Wang et al. [12]
employed the utility theory to maximize PACs' utilization with
budget constraints. Zhu et al. [13] formulated a minimization
problem for attaining minimal cost, including construction costs of
PCSs and EVs' travel fuel costs. A method that can search for the
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
mailto:hailong.li@mdh.se
mailto:qie@sdu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2021.121948&domain=pdf
www.sciencedirect.com/science/journal/03605442
http://www.elsevier.com/locate/energy
https://doi.org/10.1016/j.energy.2021.121948
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.energy.2021.121948


Nomenclature

Acronyms
ABTCM Agent-based trip chain model
CA Commercial area
EV Electrical vehicle
EVSE Electric vehicle supply equipment
FCLM Flow-capturing location model
FPCS Fast public charging station
GIS Geographic information system
MA Mixed-use area
MILP Mixed integer linear programming
NA Natural area
O-D Origin-destination
O&M Operation and maintenance
OPC Off-peak charging
PAC Publicly accessible chargers
PCS Public charging station
RAA Residential apartment area
ROI Return on investment
RVA Residential villa area
SCLM Set-coverage location model
SOC State of charge
SPCS Slow public charging station
TMP Traffic measurement point
UC Uncontrolled charging
WA Working area

Parameters and variables
i Index of potential locations for intra-city PCSs, with a

total number of I
j Index of cells and corresponding demand nodes, with

a total number of J
k Index of TMPs in a cell, with a total number of K
m Index of trips
t Index of hours, with a total number of T during the

simulation
lu Index of land use types, lu2fR;W ; Pg , with R, W, P

representing residential, working and public land use
type, respectively

z Index of existing PCSs
Pr Profit of newly-built PCSs
p Charging price per minute

x Binary indicator for whether to build a PCS
q Hourly charging demand covered by PCS
n Number of EVSE in a PCS
pw Charging power of EVSE in a PCS
c Total cost of a PCS
crent Land rental costs
cinv System investment costs
cO&M Operation and maintenance costs
cele Electricity costs
cpark Parking fee
cEVSE Investment costs of an EVSE
LT Life span of an EVSE
D Potential charging demand
Dl Charging demand at a demand node
rp Binary variable for the coverage ability of a newly-

built PCS
lp Euclidean distance between a demand node and a

newly-built PCS
L Service range of the PCS
y Maximum number of EVSE that can be installed at a

PCS
N Maximum number of PCSs to be deployed
pd Departure place
Td Departure time
dt Driving distance
td Driving time
pe Destination place
tp Parking time
SOC0 Original SOC
E Electricity consumption per kilometer
C Capacity of and EV battery
Da Hourly average charging demand
f Amount of traffic flow
A Area covered by a type of land use
Dcj A vector containing hourly charging demand at the

node of cell j
De Charging demand on a demand node covered by an

existing PCS
re Binary variable denoting the coverage ability of an

existing PCS
le Euclidean distance between a demand node and an

existing PCS
P Total output power of an existing PCS
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shortest paths and a multiple domination model were adopted in
studies [14,15] to minimize the number of PCSs while satisfying all
the charging demand. In addition, the costs of electrification and
energy transmission loss were also taken into account in PCS
planning to reduce the impacts on grid reliability in Refs. [16,17].
Integration of solar power [18] and wind power [19] integration
becomes a new principles for PCS development to realize a low
carbon future. However, most of the previous studies focused on
serviceability rather than the profitability of PCSs. It is also noted
that high investment and low utilization of PCSsmight lead to a low
chance of profiting [20]. How intra-city PCSs should be deployed to
gain maximal profits is vital for stakeholders and has not been
comprehensively studied. There is a clear knowledge gap about
quantitatively evaluating the economic performances of intra-city
PCSs.

To quantitatively assess the economy of intra-city PCSs, it is
important to consider the key factors affecting the profit of PCSs,
2

including location, charging demand, charging price, and the types
of Electric Vehicle Supply Equipment (EVSE) in the PCS [8]. Plan-
ning intra-city PCSs is different from planning inter-city PCSs. Inter-
city PCSs are usually constructed in highway networks to serve ‘on-
route charging’, and fast charging is the priority [21,22]. Intra-city
PCSs mainly meet ‘end-route charging’ demands for short-
distance trips. Intra-city charging often happens at parking loca-
tions, varying with time of the day and type of land use [23,24].
Therefore, planning of intra-city PCSs needs to consider the spatial
and temporal distribution of charging demand.

Modeling techniques of EV charging demand in the formulation
of PCS planning problem have obtained extensive academic at-
tentions. In the existing literature, the most popular methods are
Flow-Capturing LocationModels (FCLMs) and set-coverage location
models (SCLMs). FCLM, which was firstly introduced by Hodgson
[25], uses Origin-Destination (O-D) flows to express the refueling/
charging demand and aims to enable drivers to complete O-D trips
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with multiple stations on the transport network. Adopting a traffic
equilibrium model, He et al. [26] considered driving range limita-
tions, and Chen et al. [27] investigated the impacts of drivers’ time
sensitivities on charging patterns. In contrast to the fixed and static
shortest path principle, Yang [28] relaxed the assumptions on route
choice and allowed small deviation from shortest path to simulate
diverse user behaviors, and Li et al. [29] developed a multi-period
optimization model to simulate the dynamics in the charging
network. In other studies, FCLMs were extended to capture the
stochastic nature of EV charging demand [21,30]. However, the
applications of FCLMs are usually limited to the planning of refu-
eling stations and inter-city PCSs that satisfies long distance travel
demands, while SCLMs show better accuracy in intra-city PCS
planning [31]. SCLM, proposed by Toregas [32], aggregates short
distance charging demand in parking lots, which are generated
using the method of node-based geographical segmentation. The
disadvantage of SCLM is that charging demand is usually estimated
based on the population density and vehicle ownership density,
while ignores the dynamic and stochastic nature of EV travel and
charging behaviors [33]. There have been a few studies that refined
SCLMs to explicitly assess the mobility of EVs. Vazifeha et al. [34]
conducted individual EV trajectory analysis based on call detail
records. Bai et al. [35] formulated a data-driven optimization
problem based on the GPS trajectory data of thousands of vehicles.
It is noted that the charging patterns of EVs were usually over-
simplified in the literature.

For intra-city PCS planning, public charging demand should be
distinguished from private ones. This is usually handled by
assuming simplified travel and charging patterns that EVs are only
charge at home or public areas [36,37]. However, in reality, EVs tend
to be charged both at home and in public areas [38]. Some studies
transformed the demand partition problem into choice criterion
problems and associated demand levels with types of land use
[39,40]. Luo et al. [41] investigated the temporal and spatial dis-
tribution of EV charging demand by acquiring EV parking distri-
bution at different types of land uses. However, in these studies, the
charging patterns of EVs and urban land uses are usually over-
simplified, which can lead to significant deviations from real
charging demand profiles.

Through reviewing the related works, the following gaps have
been identified: (i) there is a lack of analysis about the economy of
intra-city PCSs, which is crucial for motivating investment; (ii)
there has not been a computationally effective method that can
model both temporal and spatial distributions of charging demand
and localize the demand corresponding to real-world urban areas;
and (iii) there has not been a categorization method that can
distinguish public charging demand fromprivate charging demand.

To fill these gaps, this paper proposes a novel method that can
consider the impacts of charging behaviors and urban land uses on
optimizing the location and size of PCS in order to maximize the
profits. An Agent-Based Trip Chain Model (ABTCM) is adopted to
generate dynamic and stochastic charging demand; and a cell-
based geographic partition method is conducted to localize the
generated public charging demand to real-world urban areas. To
optimize the siting and sizing of intra-city PCSs, a GIS-based Mixed
Integer Linear Programming (MILP) optimization model is formu-
lated. The proposed method is applied to V€asterås, a Swedish city,
to evaluate the impacts of service range, economic parameters and
charging strategies on the profit of intra-city PCSs.

Following this introductory section, the remainder of the paper
is structured as follows: In Section 2, the methodology for opti-
mizing the planning of intra-city PCSs is presented. Section 3 ap-
plies the proposed methods to V€asterås, Sweden, as a case study.
Section 4 reports and discusses the results and Section 5 concludes
3

the paper with a summary of key findings.
2. Methodology

The structure of the proposed method is depicted in Fig. 1.
Charging revenues and costs, land rental costs and system invest-
ment costs are taken into consideration to assess the economic
benefits of intra-city PCSs.

The charging demand generated from the Agent-Based Trip
Chain Model (ABTCM) is localized to each geographic cell according
to the type of land use and the volume of traffic flow. Then, the
economic benefits of newly built PCSs aremaximizedwith theMILP
model considering charging revenues and costs, land rental costs
and system investment costs. Charging revenues and costs are
calculated based on electricity price, charging price of the selected
EVSE and charging demand covered by the PCS. Land rental costs
are determined by the locations of intra-city PCSs, which are
selected from the potential intra-city parking locations identified
by the GIS model. Investment costs are decided by the type and
number of EVSE, which are dependent on the land use type and the
magnitude of charging demand. The details of each sub model are
introduced in the following sections.
2.1. The Mixed Integer Linear Programming model

2.1.1. The objective function
The siting and sizing of all PCSs are optimized simultaneously in

maximizing the total profit of newly-built intra-city PCSs. The
objective function is:

Max Pr
�
xi;ni; qi;t

�
¼
XI
i¼1

"
pi*xi*

XT
t¼1

qi;t

,
ðni *pwiÞ� ci

#
(1)

xi ¼
�
1 if PCS i is planned to be built
0 otherwise

(2)

where Pr is the profit of newly-built PCSs in the study area; p is the
charging price per minute; x is a binary variable representing
whether a PCS is built at a certain location, which is determined by
Eqn (2); q represents the hourly charging demand covered by the
PCS; n and pw denote the number and charging power of EVSE at
the PCS, respectively; c is the total cost of a PCS; I represents the
total number of potential locations; T represents the total number
of hours during the simulation; and subscripts i and t denote the
index of potential locations for intra-city PCSs and the index of the
hour of the day.

The total cost of a PCS consists of land rental cost (crent), system
investment cost, (cinv), fixed Operation and Maintenance (O&M)
cost, (cO&M), and electricity cost (cele), which are calculated as Eqns
(3)e(7). The fixed O&M costs are assumed to be 3% of the invest-
ment costs [42].

ci ¼ crenti þ cinvi þ cO&M
i þ celei (3)

crenti ¼ cparki *ni (4)

cinvi ¼ cEVSEi *ni (5)

cO&M
i ¼3%*LT*cinvi (6)



Fig. 1. Overview of the modeling framework.
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celei ¼ cele*
XT
t¼1

qi;t (7)

where cpark represents the parking fee for parking and installing
charger during the period of use; and cEVSE and LT stand for the
investment costs of an EVSE and its life span, respectively.
2.1.2. The constraints

1) Constraints on charging demand

The hourly charging power covered by the ith PCS, qi;t , is con-
strained by the potential charging demand nearby (Di;t) and the
total installed charging capacity (ni*pwi), as shown in Eqns (8e10).
The potential charging demand at a PCS (Di;t) is gathered from
surrounding nodes according to Eqn (11), the demand nodes have
to be in the PCS's service range (Eqn (12)) and cannot be assigned to
another PCS (Eqn (13)).

qi;t � Di;t (8)

qi;t � ni*pwi (9)

qi;t � 0 (10)

Di;t ¼ xi
XJ
j¼1

�
Dlj;t , rpi;j

�
(11)
4

rpi;j ¼
�
1 lpi;j � L
0 lpi;j > L (12)

XI
i¼1

xi , rpi;j � 1 (13)

where D denotes the potential charging demand that originates
within the service range of a PCS and could be possibly covered by
the PCS; j is the index of cells and corresponding demand nodes; J
represents the total number of cells and corresponding demand
nodes, which are further explained in Section 2.3; Dl is the charging
demand at a demand node; rp is a binary variable denoting the
coverage ability of a newly-built PCS; lp represents the Euclidean
distance between a demand node and the PCS; and L represents the
service range of the PCS.

2) The limits of the number of EVSE

Eqns (14) and (15) respectively define the upper bound and
lower bound of the number of EVSE.

ni � xi (14)

ni � yi,xi (15)

where yi represents the maximum number of EVSE that can be
installed at a PCS.

3) The limit of the total number of PCS

Eqn (16) describes the maximum number of PCS that will be
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deployed.

XI
i¼1

xi < ¼ N (16)

where N is the maximum number of PCSs that can be deployed in
the study area.
2.2. Dynamic EV charging demands at different land use types

To simulate the potential charging demand in urban areas, an
ABTCM model is used, which can capture the dynamics of EV trips
at three different land use types, corresponding to seven trip pur-
poses (Fig. 2).

The trips of an EV agent in the ABTCM are characterized by six
types of parameters: the place and time of departure, represented
by pd and Td, the distance and time for driving, represented by dt
and td, and the destination and corresponding parking time, rep-
resented by pe and tp. The trip vector is represented by Eqns
(17e19).�
pd;1; pe; Td;1; td; tp; dt

�
¼
�
pd;1; pe;1; pe;2/pe;m; Td;1; td;1; td;2/

td;m; tp;1; tp;2/tp;m;dt;1; dt;2/dt;m
� (17)

Td;mþ1 ¼ Td;m þ td þ tp; m ¼ 1; 2; 3;… (18)

pd;mþ1 ¼pe;m; m ¼ 1; 2; 3;… (19)

where m represents the index of trips.
A trip chain is formulated for each EV agent, which starts from

leaving home at time Td,1. The parameters of the following trips are
dependent on the previous trips. The ABTCM shows very good
performances of modeling real charging demand, which has been
validated in the authors’ previous work [43]. The energy con-
sumption of an EV trip is assumed to be proportionate to its driving
distance. The energy discharge of EV battery after a trip is measured
by State of Charge (SOC), which is calculated by Eqn (20).

SOC¼ SOC0 � dt;m*E⁄ C (20)

where SOC0 is the original SOC before the trip; E is the electricity
consumption per kilometer; and C is the capacity of EV battery.

In this study, two charging strategies, uncontrolled charging
(UC) strategy and off-peak charging (OPC) strategy, are employed to
Fig. 2. Travel pattern of EVs in the agent-based trip chain model (ABTCM).
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simulate EV charging behaviors, and the detailed algorithm can be
found in Ref. [43].

The accessibility to different types of EVSE is considered as an
impact factor on EV charging behaviors. Based on the statistics in
Refs. [44], EVSE is categorized into three types according to the
range of power output, as shown in Table 1.

The simulation is implemented with a 1-min resolution to
obtain the daily average charging demand as indicated by Eqn (21).

Dalu ¼
�
Dalu;1; Dalu;2/;Dalu;t

�
; lu2fR;W ; Pg (21)

where Da represents the hourly average charging demand; the
subscript lu denotes land use types; and R, W, P represent the
residential, working and public land use type, respectively.
2.3. Cell-based geographic partition for charging demand
localization

The charging demand obtained from the ABTCM simulation is
localized to the studied area according to the types of land uses. As
shown in Fig. 3, six types of areas including: Residential Villa Area
(RVA), Residential Apartment Area (RAA), Commercial Area (CA),
Working Area (WA), Mixed-use Area (MA) and Natural Area (NA),
are identified by GIS. The residential charging demand obtained
from the ABTCM is localized to RVAs and RAAs, while, only the
charging demands originated at RAAs can be satisfied by intra-city
PCSs, because residential villas are usually equipped with private
EV chargers. Theworking charging demand is localized toWAs, and
the public charging demand is localized to CAs and MAs.

In this study, the parking lots are identified as potential loca-
tions for intra-city PCSs, owing to their accessibility and conve-
nience. Each PCS is assumed to contain enough parking places.

As shown in Fig. 3, the area is partitioned into a number of
equally sized square cells. Each cell contains a certain amount of
charging demand, which is also called a demand node. The
charging demand is localized based on the real distribution of
traffic flow, which is measured by the traffic measurement points
(TMPs) in the studied area. The traffic flow in each cell (fj) is the
average value of all TMPs in it (Eqn (22)). If there is no TMP in one
cell, the traffic flow is assumed to be the average of its surrounding
cells. The spatial distributions of traffic flows are determined by
land use type and the function of areas, as given in Eqn (23). As
shown in Eqn (24), the total charging demand, which is obtained
from ABTCM (Eqn (21)) is localized to the corresponding areas
based on the function of traffic flows.

The original charging demand in each cell is firstly satisfied by
existing PCSs (Eqn (25)) and the remaining charging demand is the
potential demand for newly-built PCSs. As shown in Fig. 3, the
service ability, i.e., total installed capacity, of existing PCSs is
distributed to each cell in proportion to the inversion of the dis-
tance between the PCS and the cell (Eqns (26) and (27)).

fj ¼
1
Kj

*
XKj

kj¼1

fkj (22)
Table 1
EVSE output power and deployment at different land use types.

EVSE Output power Residential Work Public

Level 1 Up to 3.7 kW ✓

Level 2 Up to 22 kW ✓ ✓

Level 3 Up to 240 kW ✓



Fig. 3. An illustrative city map division and GIS identification.

Fig. 4. The electricity supply by source in 2017 in Sweden. Data source: IEA [45].
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flu;j ¼ fj ,
Alu;j

ARAA;j þ ARVA;j þ AWA;j þ ACA;j þ AMA;j
;

lu2fRVA;RAA;WA;CA;MAg
(23)

Dcj ¼DaR,
fRAAjPJ

j¼1

�
fRAAj þ fRVAj

�þ DW,
fWAjPJ
j¼1fWAj

þ DP,
fCAj þ fMAjPJ

j¼1

�
fCAj þ fMAj

� (24)

Dlj;t ¼max

 
0;Dcj;t �

XZ
z¼1

Dez;j

!
(25)

Dez;j ¼
rez;j * 1

�
lez;jPJ

j¼1

�
rez;j * 1

�
lez;j
	,Pz (26)

rez;j ¼
�
1 lez;j � L
0 lez;j > L (27)

where f represents the amount of traffic flow; k and K are the index
and the total number of TMPs in the cell, respectively; A represents
the area covered by a type of land use; and Dcj is a 24-dimensional
vector containing hourly charging demand at the node of cell j
(Dcj;t); the subscript z denotes the index of existing PCSs; De rep-
resents the charging demand on a demand node covered by an
existing PCS; re is a binary variable denoting the coverage ability of
an existing PCS; le represents the Euclidean distance between a
demand node and an existing PCS; and P represents the total output
power of an existing PCS.
3. Case study

V€asterås, Sweden has an overall area of 67 km2. There were
44,192 private vehicles including 324 plug-in EVs in 2016. In the
present study, the penetration rate of EV is assumed to be 5%, which
implies a total of 2200 EVs.

Sweden had achieved almost carbon-free electricity supply by
2017, and set an ambitious objective to achieve 100% renewable
electricity generation by 2040 [45]. The electricity supply by source
in Sweden is depicted in Fig. 4.

The transport sector, consuming a large amount of oil, accounts
6

for half of Swedish energy-related carbon emissions. Sweden aims
to reduce 70% of greenhouse gas emissions of the transport sector
from 2010 to 2030. Therefore, electrification of transport has been
vigorously promoted, and public charging infrastructure has been
greatly developed to strengthen the confidence of consumers. In
2017, Sweden had b the highest proportion of EV sales in the world,
i.e., 6.3% in new car sales.

Fig. 5 shows the distribution of different types of land uses,
which is derived from OpenStreetMap and Google Earth. As shown
in Fig.5(a), 8 PCSs with 40 chargers have already been installed in
the city [46]. A total of 532 parking lots in this area are identified as
potential locations for newly built intra-city PCSs. The map of the
parking lots shown in Fig. 5(b), is obtained from OpenStreetMap
[47]. As shown in Fig. 5(c), the traffic flow is monitored at 245 TMPs,
and the data can be obtained from the traffic administration of
V€asterås [48]. The whole city is divided into 268 cells with the side
length of 500 m as illustrated in Fig. 5(d).

The travel patterns are determined based the American National
Household Travel Survey 2017 and some key parameters, i.e. de-
parture time, travel distance and travel time, are calibrated by
Swedish National Travel Survey (2015e2016) [49,50]. The charging
patterns are extracted from an EV project [38].

The output power of EVSE and the cost for charging are taken
from the existing PCSs in V€asterås, Sweden [46], as shown in
Table 2. In this paper, Level 2 and Level 3 EVSE are referred to as
slow and fast chargers, respectively. According to the types of EVSE,
the PCSs are referred to as Slow PCSs (SPCSs) and Fast PCSs (FPCSs),
respectively. It is assumed that each PCS has at least 1 charger and
at most 20 chargers. It is also assumed that FPCSwill be constructed



Fig. 5. GIS information on transportation and E.V. charging in V€asterås, Sweden.

Table 2
The parameters of EVSE.a

EVSE Output power Charge Price Investment costs Lifetime

Level 2 12.8 kW 1 SEK/min $7350 per unit 10 years
Level 3 48 kW 3 SEK/min $33650 per unit 10 years

a 1 $ ¼ 8.66 SEK; Electricity price: 0.5 SEK/kWh.

Fig. 6. Classification of studied area based on land rental costs.

Table 3
Scenarios on intra-city PCS planning.

Scenario Charging strategy Service range Charging price

1 UC 500 m Fixed
2 OPC 500 m Fixed
3 UC 1000 m Fixed
4 UC 500 m Sensitivity analysis
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only in CAs and SPCSs inWAs and RAAs. In addition, the parameters
of Nissan Leaf EV are adopted to represent typical EV parameters.

As shown in Fig. 6, the city is divided into three zones, corre-
sponding to different land rental costs. Downtown in the inner ring
(green star) has the highest land cost, and the hospital (red star) is
the demarcation point of the second ring and the third ring. The
information on EVSE is summarized in Table 2. The investment
costs are derived from Refs. [42,51], which are commonly used by
other literature.
7

To evaluate the impacts of charging strategies, service range and
economic parameters on the profits of PCSs, four scenarios are
generated, and the first scenario is a benchmarking scenario. Sce-
nario 2 simulates the EV charging demand under the OPC strategy
where EV owners are motivated to change their charging patterns
to improve the grid reliability. Scenario 3 focuses on the impacts of



Table 4
Results of PCS planning in Scenario 1.

Number of newly-built PCS 5 10 15

FPCS/SPCS number 1/4 2/8 3/12
Fast/Slow Charger number 1/18 2/28 3/35
Covered demand (kWh/day) 2663.4 3903.8 4763.8
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coverage ability of PCSs, where a larger service range, 1000 m, is
considered. In Scenario 4, a sensitivity analysis on charging price is
conducted. The details of the scenarios are tabulated in Table 3. In
each scenario, three optimizations are conducted with the number
of newly-built PCSs being no more than 5, 10 and 15. In addition,
the number of EVs is assumed to remain the same.
Covered public demand fraction (%) 31.1 45.6 55.7
Profit (SEK/day) 9641.3 13857.6 16816.1
Cost (SEK/day) 2353.4 3587.5 4480.5
ROI (%) 409.7 396.3 375.3
Payback time (days) 143 163 176
4. Results and discussion

4.1. Benchmarking scenario

The ABTCM is used to simulate the charging demand of
2200 EVs. To capture the comprehensive randomness of EV be-
haviors, the simulationwas carried out for 77 days with a time step
of 1min. The simulation of the first seven days is removed to ensure
that the battery SOC of the EV fleet have arrived in random states,
and the following results start from the 8th day of simulation.

Fig. 7 shows the typical one-day charging profiles at different
land use types. The charging demand in a specific hour of day is
averaged over the values of charging demand in the same hour of
the 70 simulation days. The derived typical one-day charging pro-
files reflect the different travel and charging patterns on weekday
and weekend. It is found that a large portion of daily charging
demand is met at residential land use types, and 65% of the portion
is satisfied in RVAs, which is not included in public charging de-
mand. The peak of public charging demand appears at around 9
o'clock in themorning, which is mainly contributed by the charging
demand in WAs and CAs.

To understand the impacts of the number of newly-built PCSs, it
was assumed that 5, 10 and 15 PCSs would be built, and the opti-
mized number of chargers, costs, and profits for all PCSs are listed in
Table 4. The overall economic performances of the newly built PCSs
are very good, mainly due to the high charging price in V€asterås,
which is 7.5e9.4 times of the electricity price. The charging demand
covered by an average PCS increases with the total number of PCSs.
The increase in covered charging demand simultaneously raises the
profit and reduces the payback time. In contrast, the return on in-
vestments (ROI) decreases with the increase in the number of PCS,
i.e., the ROI is 409.7%, 396.3%, and 375.3% for 5, 10 and 15 newly
built PCSs, respectively, which indicates that the ROI is affected by
Fig. 7. Typical EV charging demand profiles at dif
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the utilization rate of chargers.
The locations of the PCSs are illustrated in Fig. 8. Since most

existing PCSs are in the city center, the newly-built PCSs are mainly
located in the surrounding area. However, in general, the PCSs
closer to the central tend to have a high level of profits due to a high
level of charging demand.
4.2. The impacts of charging pattern

With the development of smart charging technologies, it is
foreseen that off-peak charging will be greatly promoted, where EV
owners are motivated to charge at home and reduce their reliance
on PCSs [52]. As shown in Fig. 9, almost all the charging demand is
shifted to evening time, and resultantly the charging demand in
CAs and WAs is shifted to residential areas.

Although the total amount of charging demand remains un-
changed, the public charging demand decreases rapidly. This cau-
ses a high peak of charging demand in the residential areas, of
which the magnitude is twice larger than the peak in Scenario 1.

The detailed results are reported in Table 5. The change in
charging patterns leads to significant decrease in profits (compared
to Table 4). Yet, covered demand remains increasing, and the
payback time decreases with the number of PCSs. However, the
type, location and number of chargers of the newly-built PCSs are
different from those in the benchmarking scenario. Compared to
the benchmarking scenario, all the newly-built PCSs are SPCSs in
residential areas and the total public charging demand in Scenario
2 is reduced by about 40%, resulting in fewer number of chargers on
ferent land use types under the UC strategy.



Fig. 8. Locations and daily profits of the newly-built PCSs in Scenario 1.

Fig. 9. Typical EV charging demand profiles at different land use types under OPC strategy.

Table 5
Results of PCS planning in Scenario 2.

Number of newly-built PCS 5 10 15

FPCS/SPCS number 0/5 0/10 0/15
Fast/Slow Charger number 0/14 0/27 0/34
Covered demand (kWh/day) 1356.1 2334.8 2934.4
Covered public demand fraction (%) 26.0 44.8 56.4
Profit (SEK/day) 4978.5 8443.6 10406.1
Cost (SEK/day) 1378.2 2501.0 3217.3
ROI (%) 361.2 337.6 323.4
Payback time (days) 171 193 216
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average at every PCS.
4.3. The impacts of the coverage ability of PCSs

Service range is an important indicator for evaluating PCS ser-
vice ability. Exiting studies assumed that service range should be
slightly longer than people's acceptable walking distance from
parking lots to destinations, i.e., 400 m. Some studies adopted the
service range of refueling station. Regarding SPCS, EV owners
usually park vehicles for a long period of time, and the service range



Fig. 10. Correlation between covered demand and daily profit of the new PCSs.
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should be close to the acceptable walking distance to avoid
impairing people's travel satisfaction. However, in anticipation of
the advancement of fast charging and battery swap technology, the
duration to serve a customer will become shorter and close to the
service time of refueling station. Therefore, this study sets up ser-
vice range of 500 m and 1000 m to investigate the impacts of cover
ability.

For a certain type of PCS, a larger service range usually means a
larger amount of covered charging demand, and thus means larger
charging revenues. The relation between coverage ability and daily
profits is illustrated in Fig. 10, based on the results for 5 and 10 PCSs
in Scenario 1 and 3. Fig. 10 reflects that profit is linearly correlated
to charging demand, which is under the limit that a PCS can serve.
The profitability of FPCS is slightly lower than that of SPCS, because
FPCS has higher investment. The comparison between FPCS and
SPCS will be elaborated in Section 4.4.1. In addition to service range,
larger penetration rates also mean larger amount of charging de-
mand for each PCS. Given the lessons learned here, the profit of PCS
will increase proportionally with the increase in EV penetration
rate, while the return-on-investment (ROI) of PCS is similarly
constant. Since the number of chargers has not reached the ca-
pacity limit, the number of chargers will increase with the increase
in charging demands, while the locations of PCSs remain the same.
If the penetration of EVs keeps increasing and reaches the capacity
of potential locations, new PCSs will be built and the locations with
high profitability have priority over others (Fig. 8).

The numerical results of Scenario 3 are presented in Table 6.
Compared to the benchmarking scenario, the covered charging
demand in Scenario 3 is 58.8% larger with 5 newly-built PCSs, 46.5%
larger with 10 newly-built PCSs and 31.4% larger with 15 newly-
built PCSs. Correspondingly, the number of chargers increases by
57.9%e89.5%, and the profits increase by 38.7%e57.5%. The covered
demand of a charger on average is less than that in Scenario 1,
which indicates a decrease in charger utilization as well as ROI.

Fig. 11 depicts the cover ability of existing and newly-built PCSs
in Scenario 1 and 3. The public charging demand covered by
existing PCSs increases from 691.9 kWh in Scenario 1 to 1987.3 kWh
Table 6
Results of PCS planning in Scenario 3.

Number of newly-built PCS 5 10 15

FPCS/SPCS number 1/4 0/10 0/15
Fast/Slow Charger number 2/34 0/50 0/60
Covered demand (kWh/day) 4229.4 5718.6 6259.7
Covered public demand fraction (%) 49.4 66.8 73.1
Profit (SEK/day) 15184.4 21538.6 23322.5
Cost (SEK/day) 3994.1 5267.5 6019.7
ROI (%) 380.2 408.9 387.4
Payback time (days) 172 142 157
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in Scenario 3, accounting for about 23% of the total public charging
demand. As shown in Fig. 11(d), the existing and newly-built PCSs
with a service range of 10000 m can meet 95% of the total public
charging demand. In addition, disproportionately huge investment
is needed to meet the remaining 5% of the peak public charging
demand. This will be discussed in detail in Section 4.4.2.
4.4. The impacts of charging price

The high charging price in V€asterås is expected to decline in the
future and this would encourage people to charge at PCSs. In this
section, the impacts of charging price are evaluated by a sensitivity
analysis.4.4.1 The impacts on the competition between FPCS and
SPCS.

The cost for a FPCS is generally higher than that for a SPCS
(Table 2). One the one hand, the investment costs and O&Mcost of a
FPCS are higher than that of a SPCS. On the other, the fee charged
per kWh at a FPCS is 80% of that at a SPCS. Therefore, SPCSs have
higher profitability than FPCSs for serving the same amount of
charging demand. This explains why the number of SPCS is usually
much more than the number of FPCS.

To investigate the impacts of charging price on the competition
between FPCS and SPCS, the charging price of FPCS is fixed, while
the charging price of SPCS decreased by 0%e50%, with a step of 5%.
The variation in the number of FPCS is shown in Fig. 12. The
reduction in charging price of SPCS leads to a declining profitability
as well as competitiveness, while the number of FPCSs increases.
When the reduction in charging price of SPCS is smaller than 25%,
the number of FPCS is fewer than the number of SPCS; when the
charging price of SPCS reduces by 25%e30%, FPCS becomes
competitive with SPCS; and the number of FPCS is more than the
number of SPCSwhen the charging price of SPCS decrease over 35%.
However, maximum 8 FPCSs could be constructed in a total of 15
PCSs, due to the limit of the total commercial land use area.

The geographical distribution of the 5 new PCSswith a 15% and a
45% reduction in SPCS charging price is shown in Fig. 13. Compared
to the benchmarking scenario, SPCSs are replaced by FPCS, while
the location of the PCSs remains nearly unchanged. This result re-
flects the fact that the PCS location mainly depends on the distri-
bution of aggregated charging demand, and it certifies the
robustness of the proposed method for optimizing PCS location.
4.4.1. The impacts on PCS payback time and sizing
To investigate the impacts of price variation on PCS payback

time and sizing, the charging prices of both SPCS and FPCS decrease
by 0%e80%, with a step of 10%. For SPCS, a 25% reduction in the
charging price is taken as the reference for the sensitivity analysis.

The variation of ROI and payback time for 10 newly-built PCSs
with different charging prices is illustrated in Fig. 14. ROI decreases
and the payback time increases with the reduction in charging
price. PCSs will break evenwhen the charging price reduces by 80%,
while the payback time prolonged to about ten years.

Variation of charging price also impacts on PCS sizing, which can
further affect the coverage ability of PCSs. As depicted in Fig. 15, the
charging capacity of PCSs decreases, and average working time
increases along with the reduction of charging price. Compared to
the benchmarking scenario, the peak charging power decreases by
about 80% and the average daily working time of chargers increases
from 8.6 h to 11.8 h, due to an 80% reduction in charging price.

To further evaluate the impacts of charging price on the
coverage ability of PCS, a random SPCS is taken as an example. As
shown in Fig.16Fig.16, the peak demand can be satisfied by 3
chargers. When the charging price is reduced by 60%, indicated by
the grey dashed curve, the optimization results show that only one



Fig. 11. Public charging demand covered by existing and new PCSs in Scenario 1 and 3.

Fig. 12. The impacts of SPCS charging price reduction on the planning of FPCSs.

Fig. 13. Overview of the siting results with a 15% and a 45% reduction in SPCS charging price of.

Fig. 14. Variation of ROI and payback time with different charging prices.
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Fig. 15. Variation of average working time and covered charging power with different
charging prices.

Fig. 16. The ability of a PCS to cover peak demand with different charging prices.
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chargerwill be installed, and only the base demandwill bemet. The
results with a high time resolution further prove the advantage of
the proposed model in modeling the temporal heterogeneity of
stochastic charging demand.

5. Conclusion

To optimize the location and size of Public Charging Stations
(PCSs) and in order to maximize their profits, this paper proposes a
framework, which combines an ABTCM, a cell-based geographic
partition method and a GIS-based MILP optimization model. Such a
framework provides a robust and adaptable approach to distin-
guish public charging demand from private charging demand and
provides a real representation of the spatial and temporal distri-
bution of public charging demand. The method has a good repli-
cability. It can be applied to any city if the travel survey data, traffic
flow measurement, and distribution of parking lot locations are
available.

In this work, the proposed framework is verified by adopting it
for a case study. The impacts of charging pattern, coverage ability of
PCS and charging price on the planning of PCSs are specifically
investigated. With the current charging price, the more charging
demand a PCS serves, the higher profits it attains. Public charging
demand can decrease by as much as 40% due to the variation of
charging pattern, and the profits of a PCS would decrease signifi-
cantly under the off-peak charging strategy. Due to the same
reason, improving the coverage ability of a PCS can improve its
profitability, and the location of PCSs gives priority to the areas with
high charging demand. In addition, a decrease in charging price
impairs the profitability of PCSs, and thus leads to smaller PCS sizes.
By comparison, SPCS has competitiveness advantage over FPCS
with the current charging price, while FPCS becomes competitive
with SPCS when the charging price of SPCS reduces by 25%e30%.
12
This paper provides policymakers and PCS investors an effective
tool for planning intra-city PCS investments and highlights the
importance of charging prices for motivating EV penetration. This
work focuses on the planning of PCS in reference to profitability and
the capacity limit of the local low-voltage grid was not considered,
due to lack of data. Future studies will consider the variation of
charging speed and the impacts on low-voltage distribution
network based on real-time distributed control algorithm for EV
charging and vehicle to grid (V2G). In addition, in the current study,
the demand simulation and PCS planning are relatively indepen-
dent to avoid changing the existing travel and charging pattern of
drivers. The impacts of newly-built PCSs on the travel and charging
behaviors of EV owners can be evaluated in a more interactive way
in future studies.
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