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Abstract
China’s anthropogenic methane emissions are the largest of any country in the world. A recent
study using atmospheric observations suggested that recent policies aimed at reducing emissions of
methane due to coal production in China after 2010 had been largely ineffective. Here, based on a
longer observational record and an updated modelling approach, we find a statistically significant
positive linear trend (0.36± 0.04 (±1σ) Tg CH4 yr−2) in China’s methane emissions for
2010–2017. This trend was slowing down at a statistically significant rate of
-0.1± 0.04 Tg CH4 yr−3. We find that this decrease in growth rate can in part be attributed to a
decline in China’s coal production. However, coal mine methane emissions have not declined as
rapidly as production, implying that there may be substantial fugitive emissions from abandoned
coal mines that have previously been overlooked. We also find that emissions over rice-growing
and aquaculture-farming regions show a positive trend (0.13± 0.05 Tg CH4 yr−2 for 2010–2017)
despite reports of shrinking rice paddy areas, implying potentially significant emissions from new
aquaculture activities, which are thought to be primarily located on converted rice paddies.

1. Introduction

Methane is the second most important anthro-
pogenic greenhouse gas after carbon dioxide and
accounts for nearly 25% of radiative forcing since
the pre-industrial era (Myhre et al 2014). It has been

highlighted as an important target for meeting cli-
mate policies such as the Paris Agreement (Ganesan
et al 2019). Global methane concentrations stabil-
ized in the atmosphere from 1999 to 2006 but growth
resumed in 2007 (Rigby et al 2008, Dlugokencky et al
2009) and still continues at some of the highest rates
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in the recent measurement record (Nisbet et al 2019).
The causes of these recent changes in the atmosphere
remain controversial (Helmig et al 2016, Schaefer
et al 2016, Rigby et al 2017, Turner et al 2017, 2019,
Worden et al 2017, Saunois et al 2020, Zhao et al
2020).

China is the largest anthropogenic methane emit-
ting country in the world according to United
Nations Framework Convention on Climate Change
(UNFCCC) reports (UNFCCC 2020). Coal mining,
rice cultivation, ruminant livestock, and waste man-
agement are thought to account for about 90% of the
country’s total methane emissions (Chen et al 2013,
Peng et al 2016, Janssens-Maenhout et al 2019, Sheng
et al 2019). Previous inverse analyses (or ‘top-down’,
atmospheric data-based estimates) of satellite and
surface network observations suggested that China’s
annual emissions grew by ∼1 Tg CH4 yr−1 from
2000 to 2010 (Bergamaschi et al 2013, Thompson
et al 2015), and that this trend continued for 2010–
2015 (Miller et al 2019), primarily attributed to
increased emissions from coal mining. However,
recent bottom-up inventory estimates using localized
emission factors and information on coal production
from China (Zhu et al 2017, Sheng et al 2019) show
that China’s coal mine methane (CMM) emissions
have instead stabilized or decreased since 2012, with
coal production declining by about 10%by 2017 from
the peak levels in 2012/2013. There are also emerging
sources such as abandoned coal mines and freshwater
aquaculture (Yuan et al 2019, Gao et al 2020), which
have not been assessed by previous inverse modeling
studies.

Here we use eight years (2010–2017) of Green-
house Gases Observing Satellite (GOSAT) column
methane observations (Parker et al 2015) and high
frequency data from the National Institute for Envir-
onmental Studies Japan (NIES) surface network at
Cape Ochiishi and Hateruma in Japan (Tohjima et al
2014) to estimate methane emissions and trends in
China through a regional Bayesian inverse analysis.
Our regional inverse approach has the benefit over
previous global studies (Maasakkers et al 2019, Miller
et al 2019) because it estimates methane emissions at
higher spatial resolution (crucial for accurate source
attribution) and is independent of the large uncer-
tainties in themain sink (Rigby et al 2017, Turner et al
2017), atmospheric oxidation by the hydroxyl radical.
Source emission attribution often relies on know-
ledge of relative fractions of sectoral emissions within
model grid cells. We use state-of-the-art bottom-
up inventories as the prior for the inversion, which
include accurate geo-coded locations of coal mines
in China (Sheng et al 2019), known to better than
20 km, spatially finer than the model resolution.
Most previous inverse analyses for China used the
EDGAR v4.2 or EDGAR v4.3.2 gridded inventories
(Janssens-Maenhout et al 2019) as their prior estim-
ates for anthropogenic emissions. However, incorrect

source locations for coal mining, oil, and natural gas
sectors have been found in the EDGAR inventories,
which can bias inversion results and lead to erroneous
source attribution in top-down estimates (Maasak-
kers et al 2016, Sheng et al 2018, 2019, Scarpelli et al
2020). For other anthropogenic source sectors we use
the EDGAR v4.3.2 as our prior estimates because
spatial errors in other source sectors in EDGAR are
much smaller than the fossil fuel sector (Maasak-
kers et al 2016). Freshwater aquaculture is mainly
co-located with and/or converted from rice grow-
ing regions and has been found to be a potential
increasing source of methane in China (Yuan et al
2019). This source is overlooked in EDGAR v4.3,
and thus here we assume that rice growing regions
informed by EDGAR v4.3 also include aquaculture.
The improved inventory information in our inver-
sion allows us to more accurately quantify emissions
and attribute contributions from different source sec-
tors. Uncertainties in source attribution due to prior
fractional information are assessed by an ensemble
of 1000 inversions using perturbations of the prior
inventories (referred to as SENSPrior, see section 2
for details). The ensemble uncertainty analysis here is
critical to assess sensitivity to different prior estimates
and avoid potentially biased interpretation of inver-
sion results. The details of the prior inventories are
summarized in table S1 in supplementary informa-
tion (SI) (available online at stacks.iop.org/ERL/16/
104018/mmedia). Throughout this text, our posterior
estimates are presented as the mean of the ‘SENSPrior’
ensemble with uncertainties represented by ±1σ of
the ensemble. We will also present our EDGAR-based
(EDGAR v4.2 as prior) inversions later in the text to
demonstrate that trend inference in previous studies
for China could have been biased by incorrect emis-
sion patterns for coal mining.

2. Methods

2.1. Observations
We use the version 7.2 proxy nadir retrievals of
GOSAT methane column data from the University of
Leicester (Parker et al 2015) in our inverse analysis.
GOSAT retrieves the atmospheric methane column
by nadir measurements of solar backscatter (1.65 µm
absorption band) (Kuze et al 2016). Observations are
made at three circular pixels of 10 km diameter across
the orbit track 260 km apart, separated by 260 km
along the track. The same locations are sampled every
three days. In China, GOSAT retrieves about 1000
observations per month, but there are more data in
the west because of less cloud cover. The number of
GOSAT retrievals over a given location does not vary
significantly year-to-year and is similar for different
seasons, though it is slightly larger during October–
December in China (see figure S8 in SI). The abil-
ity of GOSAT to constrain regional methane emis-
sions has been shown by previous high resolution
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inverse studies for India, Brazil, North America,
North Africa, etc (Ganesan et al 2017, Tunnicliffe et al
2020, Maasakkers et al 2021, Western et al 2021).

We also include ground-based hourly measure-
ments at (43.2◦N, 145.5◦E, 96 m above sea level) and
Hateruma (24.1◦N, 123.8◦E, 46.5 m above sea level)
stations in Japan operated by the Institute for Envir-
onmental Studies (NIES), which have been described
in detail by Tohjima et al (2014). The two stations are
relatively insensitive to China’s emissions, but help to
improve the constraints to boundary conditions.

2.2. Inversion framework
We use the UKMet Office NAME (Numerical Atmo-
spheric dispersionModelling Environment) model, a
Lagrangian particle dispersion model (Manning et al
2011), as the atmospheric transport model used to
provide the relationship between emissions and con-
centrations in the atmosphere. The model domain
is 54◦E–170◦W, 5◦S–84◦N. We derive an optimized
estimate of spatially resolved methane emissions in
China using Bayesian inverse analysis. The inversion
minimizes the cost function J(x) by solving∇x J(x) =
0, with J(x) defined as follows:

J(x) =
1

2
(x− xprior)TP−1(x− xprior)

+
1

2
(y−Hx)TR−1(y−Hx). (1)

Here y is the vector of observations,H is the Jacobian
matrix representing the sensitivities of observations
to changes in the state vector x and xprior is the the
prior value of x. P is the prior error covariancematrix
and R is the observational error covariance matrix.

The state vector contains 250 elements for aggreg-
ated methane emissions per month (200 elements for
China) within the model domain using a Gaussian
Mixture Model (GMM) with radial basis functions
based on spatial proximity and source type patterns
(Turner and Jacob 2015). The resulting clustering is
shown in figure S10 in SI. The use of the GMM
enables us to retain high resolution for major sources
up to native model resolution while coarsening res-
olution for weak or broadly distributed sources. The
choice of the number of emission elements in China
is based on the suggestions from Turner and Jacob
(2015) that balance the aggregation and smoothing
errors. The state vector also includes additional four
elements for monthly boundary concentrations at
the four edges of the model domain to reduce the
influence of potential biases in boundary conditions
on our derived fluxes (Lunt et al 2016, Tunnicliffe
et al 2020) and one element for an offset para-
meter between satellite and surface data. The prior
boundary concentrations at the domain edges for
the Lagrangian particle dispersion model are from a
GEOS-Chem 4◦ × 5◦ global simulation using meth-
ane emissions optimized with GOSAT satellite data
Maasakkers et al (2019). Here our prior bottom-up

inventory is not pre-optimized by the global inver-
sion. The offset parameter (20 ppb a priori) accounts
for any systematic differences between the GOSAT
and the NIES ground-based measurements and their
representations by the model Tunnicliffe et al (2020).
Furthermore, we note that our inversion results are
not significantly affected by changing the numbers
of emission elements for China (within Turner et al
suggested range) and the elements for the bound-
ary concentrations (see figure S3 and S10 for in SI
for details). We assume 100% prior error for each
emission state vector elementwithout correlation (i.e.
off-diagonal elements in P are zero), 2% prior error
for boundary conditions, and 50% prior error for
the offset parameter. Previous studies (Maasakkers
et al 2016, Bloom et al 2017, Zhang et al 2020) have
suggested that error correlation is mainly related to
natural wetlands (i.e. there are no large error cor-
relations in anthropogenic emissions), while wetland
emissions account for less than 5% of China’s total
emissions and are a minor source in our inversion.
We also note that adding small error correlations
(5%–20%) for emissions in P do not change our res-
ults (see figure S13 in the SI). Therefore taking a
diagonal prior covariance matrix here is appropri-
ate. Observational errors include GOSAT instrument,
model transport, and representation errors. We use
10 ppb as the mean observational error (model error
+ instrument error) standard deviation derived by
previous NAME inverse modeling against ground-
based observations (Manning et al 2011). TheGOSAT
mean instrument error standard deviation is 11 ppb
(Parker et al 2015), indicating that satellite instru-
ment error dominates the observational error. For a
given satellite observation, we take the maximum of
the reported GOSAT instrument error and NAME
model error as the observational error added in quad-
rature to the observational error covariance matrix.

The sensitivity matrix H is computed by NAME.
We release particles at a rate of 2000 particles per hour
for each GOSAT retrieval vertical level, over a one
minute period centered around the retrieval time, and
trace them back in time for 30 d, as done by previous
studies (Ganesan et al 2017, Tunnicliffe et al 2020).
For surface sites, we release 20 000 particles at the
release height of the stations (100 m and 50 m above
sea level for Cape Ochiishi and Hateruma, respect-
ively). Particles are lost when they reach the surface
or the four edges of the model domain. The sensitiv-
ity matrix H changes over time depending on differ-
ent measurement locations and varying meteorology.
The OH impact on regional inversions here is neg-
ligible. The majority of the sensitivity of a measure-
ment to the surrounding emissions is within 100 km
of the measurement location. This implies that air
masses will typically travel for a few hours to a few
days in this high sensitivity region, during which time
and only 0.006%–0.2% of the methane (particles)
will be lost due to reaction with OH. The model is
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driven by the Unified Model’s Model meteorology
(Walters et al 2014) with horizontal resolution span-
ning from 0.352◦ × 0.234◦ to 0.141◦ × 0.094◦ over
2010-2017. The model output is set to be 0.352◦ ×
0.234◦ for the inversion to be consistent with the low-
est meteorological resolution used. NAME has been
used extensively to calculate sensitivity matrices for
inverses analyses of long-lived greenhouse gases and
ozone-depleting gases (Manning et al 2011, Ganesan
et al 2014, 2017, Rigby et al 2019, Tunnicliffe et al
2020).

We perform the inversion at monthly resolu-
tion. We optimize the logarithms of the emission to
ensure positivity in all grid cells. Inversions under
normal and lognormal assumptions for emissions are
previously found to be consistent (Maasakkers et al
2019). We found our inversion results between the
two assumptions using our baseline prior invent-
ory differ less than 0.6% on sectoral and national
scales. Under the lognormal assumption, the inverse
problem is non-linear and can be solved numeric-
ally by the Levenberg-Marquardt iterative algorithm
(Maasakkers et al 2019) with a convergence tolerance
of 0.05% for maximum relative error:

xn+1 = xn +(R−1 +HT
nP

−1Hn)
−1(HT

nP
−1Hn)

−1

× (y−Hxn)+R−1(xn − xprior) (2)

where Hn = ∂y/∂(lnx) is the Jacobian matrix at the
nth iteration. Each individual element ∂yi/∂ lnxj of
Hn can be recalculated in the iteration by ∂yi/∂ lnxj =
xj∂yi/∂xj with ∂yi/∂xj being individual elements of
H for linear problems computed by the forward
model. Validation of inversion results with observa-
tions is presented in figures S1 and S2 in SI.

2.3. Sensitivity tests
To test the inversion sensitivity to the prior bound-
ary conditions, we performed 100 inversions by
randomly perturbing the boundary conditions on
each grid cell at four domain edges (referred to as
‘SENSBC’). The perturbations followed a uniformdis-
tribution within ±2%. We find that 95% (i.e. 2σ) of
the ensemble ‘SENSBC’ results differ less than 0.8% for
the national totals and 0.5%–2% for different source
sectors (see figure S3).We also performed a sensitivity
test on the model XCO2 by using a different GOSAT
proxy product from the RemoTeC v2.3.9, which used
the CarbonTracker Model to model XCO2 (Schepers
et al 2012), while the University of Leicester GOSAT
proxy product used in our inversion is based on an
ensemble of model XCO2 data (Parker et al 2015)
(figure S4). These sensitivity tests show that inversion
results are generally insensitive to different GOSAT
proxy product and random perturbations on prior
boundary conditions.

To evaluate the inversion sensitivity to the prior
fractional information, we perform an ensemble of

inversions using 1000 different prior estimates gener-
ated by perturbing the baseline prior. This ensemble
is referred to as ‘SENSPrior’ and throughout the text
the ensemble mean represents our posterior estim-
ates. For each ensemble member, the relative frac-
tion of a given source sector is perturbed in each
grid cell. This is done by randomly selecting a source
from coal, rice/aquaculture, livestock, waste, oil/gas,
wetlands, or other sectors within the given grid cell
and then increasing or decreasing the selected sector
emissions following a uniform distribution (±20%).
This procedure will also change the total emissions in
each grid cell and thus the total emissions for each
ensemble member. We neglect grid cells that have
small emissions less than 0.5 ton CH4 per day. We do
not perturb source sectors that have a fraction of 0
or 1 in a grid cell (i.e. have no source emissions or
dominate the grid cell completely). Overall there are
approximately 1500 gridded emissions in China that
are perturbed. An example of perturbed sector frac-
tions for the gridded emission inventory is shown in
figure S9(a) in SI. We note that the effect of doing
the emission perturbation on state vector elements
instead of gridded emissions is small (as shown in
figure S9 in SI). We prefer to do emission perturb-
ation on the prior 0.352◦ × 0.234◦ gridded invent-
ory because it is independent of choice of state vec-
tor. This ensemble sensitivity test allows us to assess
the effect on source attribution due to uncertainties in
relative sector fractions within grid cells (in particular
those that havemixed sources). Perturbed sector frac-
tions at grid levels could change the patterns of state
vector elements determined by the Gaussian mixture
model we used, but we find this change is minimal to
our inversion results (see figure S10 in SI).

We also perform two additional inversions using
the EDGAR v4.2 inventory and a scaled EDGAR v4.2
inventory as the prior. The latter scales coal mining
emissions in EDGAR v4.2 from 28 Tg CH4 yr−1 to
16.7 Tg CH4 yr−1 to match the total emissions of coal
mining in the China-specific coal inventory (Sheng
et al 2019). The purpose of these additional inversions
is to demonstrate that large spatial errors in coal min-
ing can lead to biased interpretation of inversion res-
ults for China as we discussed in the main text.

3. Results and discussion

3.1. China’s national emission estimates and trends
We estimate China’s mean annual total meth-
ane emissions over 2010–2017 to be 57.6 ±
2.4 Tg CH4 yr−1 (of which 55.2 ± 2.3 Tg CH4

yr−1 are anthropogenic emissions) (figure 1). Our
posterior anthropogenic estimates are consistent
with the China’s 2014 UNFCCC report (UNFCCC
2020) (55.3 ± 2.9 Tg CH4 yr−1) and with the pre-
vious top-down estimates over similar time peri-
ods (Maasakkers et al 2019, Miller et al 2019, Wang
et al 2019, 2021). The year-to-year variability of our
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Figure 1. China’s national methane emissions over 2010–2017. The posterior estimate from this study (blue) is the mean of the
inversion ensemble (SENSPrior) with shading corresponding to (1σ) of the ensemble. Two additional inversions using the EDGAR
v4.2 (orange) and scaled EDGAR v4.2 (light blue) inventories as the prior are also shown. Bottom-up estimates from China’s 2014
UNFCCC report (UNFCCC 2020), and previous top-down estimates with (1σ) uncertainties from Miller et al (2019) to Wang
et al (2019) are provided.

Figure 2. Spatial distribution of China’s methane emissions. (a) Prior methane emissions in China from inventories; (b) Mean
posterior emissions for 2010–2017 from this study; (c) Absolute difference between mean 2010–2017 posterior emissions and the
prior; and (d) Major source sectors for grid cells with high emissions (>5 metric ton per day) and dominated (>50%) by a single
source as identified by the prior. ‘Other’ denotes high emitting grid cells but with no source comprising>50% of a grid cell.

posterior emission estimates is smaller than that
found by Wang et al (2021). This difference could
be attributed to the fact that Wang et al refer to an
East Asia region that includes many other coun-
tries outside of China. In particular, these non-
China regions contain wetlands, which are one of
the major drivers for year-to-year variability. While
our posterior estimates are only 6% lower than
the prior (61.2 Tg CH4 yr−1, figure 1), there are
large positive and negative absolute differences on

a sub-national/provincial scale that tend to cancel
each other on the national scale (figure 2(c)). The
relative differences are up to 50% across the country
and significant error reductions are mostly over large
source regions (see figure S11 in SI).

We find that China’s emissions exhibit a statistic-
ally significant positive linear trend (0.36 ± 0.04 Tg
CH4 yr−2) for 2010–2017. This trend was slowing
down at a statistically significant rate of -0.1± 0.04 Tg
CH4 yr−3 indicated by the negative coefficient for the
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third term in a Legendre polynomial regression (see
SI for details). During 2010–2012 China’s emissions
increase at a rate of 0.77±0.2 TgCH4 yr−2), then slow
after 2012 to 0.3 ± 0.1 Tg CH4 yr−2 for 2012–2017.
Our trend estimate for 2010–2015 (0.5 ± 0.2 Tg
CH4 yr−2) is smaller than 1.1 ± 0.4 Tg CH4 yr−2

suggested by a previous study (Miller et al 2019)
for the same time period. This is discussed further
below.

3.2. Emissions and their trends for major source
sectors
Fractions of each source in the prior emission invent-
ories can be used to apportion emissions and emis-
sion trends to source sectors in countries such as
China where the different sources have distinct spa-
tial or temporal distributions (Sheng et al 2018,
Tunnicliffe et al 2020). Coal mining, rice/aquacul-
ture, livestock, and waste are dominant sources for
China’s anthropogenic emissions. CMM emissions
are mainly in Shanxi province and Southwest China,
whereas emissions from rice/aquaculture dominate
in Southeast China, comparable to the spatial dis-
tribution of rice paddies retrieved from the MODIS
satellite data (Zhang et al 2020). Livestock emissions
are mainly concentrated in a number of provinces
in north-central and Southwest China, which is con-
sistent with major livestock provinces reported in
China Statistical Yearbook (National Bureau of Stat-
istics of China 2020). Waste emissions are localized
in urban areas, correlated with population. Wetland
emissions are small in China and only dominate a few
places in Southeast China and North China. Emis-
sions from other anthropogenic sources and natural
sources are too small to dominate any grid cells.
Regions having mixed sources (i.e. no source com-
prising >50% of a grid cell) are mainly in Sichuan
and Shandong provinces. Overall, the locations dom-
inated by thesemajor source sectors arewell separated
at the 0.352◦ × 0.234◦ model spatial resolution and
account for 70% of the total emissions from China
(figure 2(d)).

Coal mining is the largest contributor to the total
methane emissions in China with mean 2010–2017
emissions of 14.5 ± 1.4 Tg CH4 yr−1 (table S1). The
second largest source in China is rice-aquaculture
with mean emissions of 13.2 ± 1.0 Tg CH4 yr−1,
followed by livestock at 11.2 ± 1.1 Tg CH4 yr−1

and waste at 10.2 ± 0.8 Tg CH4 yr−1 (table S1).
Trends for these sectors are discussed below, with
other minor source sectors showing no significant
trends (see figure S5 in SI).

CMM emissions increased by 0.7 ±
0.3 Tg CH4 yr−2 from 2010 to 2012, driving the
national trend, but flattened afterwards with a smal-
ler growth of 0.1 ± 0.06 Tg CH4 yr−2 for 2012–2017
(figure 3(a)). According to activity data, coal produc-
tion peaked in 2013, and in 2016/2017 returned to
levels similar to those of 2010 (National Bureau of

Statistics of China 2020) (figure 3(b)). The derived
emission trend is consistent with coal production
activities for 2010–2012 (figure 3(b)), but deviates
after that. This inconsistency between top-down
estimates and production may be due to emissions
from abandoned coal mines. Since 2010/2011, China
has consolidated its coal industry to concentrate pro-
duction in the existing larger and more efficient coal
mines (typically state-run mines), and to gradu-
ally close a large number of small, village or town-
owned coal mines (Zhu et al 2017, Sheng et al 2019)
that are widely spread across the all coal mining
fields in China (figure S12 in SI). Our CMM prior
inventory includes 11 000 operating coal mines in
2010/2011, of which about 4000 mines have been
closed and abandoned over 2010–2017 (Sheng et al
2019) (figure 3(b)) but are still allocated in the prior
inventory for the inversions. Therefore the derived
trend over coal mine fields comprises the contri-
butions from abandoned mines since 2011. An act-
ively venting abandoned mine can emit methane
up to 40%–90% of its initial rate in the first 3–4
years, shrinking to 10% after 30 years (US EPA 2004).
Increasing emission factors for active coal mines may
also explain the inconsistency, but reported recovery
rates of CMM have been increasing (Zhu et al 2017,
Sheng et al 2019, Gao et al 2020). Thus emission
factors are more likely to have decreased or remained
stable, which would suggest about 1.7 Tg CH4 yr−1

coming from abandoned coal mines in 2017 assum-
ing emissions in 2017 from active coal mining are
similar to those in 2010.

Our CMM emission trend differs from that
derived in the previous inverse analysis (Miller et al
2019), which uses the EDGAR v4.2 as their prior
and shows a continuous increase after 2012 1.0 ±
0.3 Tg CH4 yr−2 (figure 3(a)). We propose that this
difference is due to two factors related to the spa-
tial pattern of emissions in the prior. First, the trend
in total emissions is higher after 2013. When we use
the EDGAR v4.2 as the prior in our inversion rather
than the China-specific coal inventory (Sheng et al
2019), we derive a similar larger trend after 2012
in the total emissions (figures 1). The magnitude of
prior CMM emissions do not significantly influence
the posterior trend as indicated by our inversion res-
ults using scaled-down EDGAR v4.2 coal emissions
(figure 1). This finding indicates that inaccuracies in
the spatial distribution of the coal sector in EDGAR
can to some extent lead to errors in the derived trend
in total emissions. Second, the EDGAR v4.2 invent-
ory at coarse resolution (2◦ × 2.5◦) that were used
by the previous global inversion (Miller et al 2019)
(figure S6 in SI), show that grid cells dominated by
coal or mixed sources account for about 85% of the
total emissions, in contrast to the high-resolution
China-specific inventory used here which has 28% of
total emissions from coal dominated grid cells. The
strongly differing emission patterns between the two
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Figure 3. China’s methane emissions and emitting activities since 2010 for four major source sectors. (a) and (b) coal methane
emissions and mining activities (production and number of active mines); (c) and (d) rice-aquaculture methane emissions and
activities (areas for rice paddies and aquaculture ponds); (e) and (f) waste methane emissions and activities (the amount of solid
waste at landfills and the number of waste water treatment plants); (g) and (h) livestock methane emissions and activities (cattle
population). Shaded areas denote±1σ uncertainties from the posterior ensemble (‘SENSprior’). Our inversion results using
EDGAR v4.2 as the prior are also shown in addition to previous results from Miller et al (2019). Freshwater aquaculture areas are
from Bureau of Fisheries - Ministry of Agriculture, China (2018). Activity data for waste water treatment plants are from Zhao
et al (2019). Other activity data are from National Bureau of Statistics of China (2020).

inventories remain even at higher spatial resolution
(figure S7 in SI). This would lead to a higher
apportionment of the total trend to the CMM sector
and consequently affect the trends of other source sec-
tors (figures 3(c), (e), (g)). These two factors together
may explain the larger derived trend in CMM
emissions in the previous work, compared to our
estimates.

The emission estimates from rice-aquaculture
have increased by 0.13± 0.05 Tg CH4 yr−2 from 2010
to 2017. Rice emissions are proportional to paddy area
(Eggleston et al 2006), but the trend in derived emis-
sions is opposite to that of reported paddy area after

2013 (2%decline from2013 to 2017 (National Bureau
of Statistics of China 2020)). The decline of rice paddy
areas is largely related to ongoing conversion of paddy
fields towards industrial-scale aquaculture (Yuan et al
2019). Freshwater aquaculture in China has emission
factors about four times larger than rice cultivation
and is estimated to emit 3.5 Tg CH4 yr−1 based on the
total area of aquaculture ponds (Yuan et al 2019), but
has been overlooked in previous gridded bottom-up
inventories (such as EDGAR v4.3) and inverse ana-
lyses. The freshwater aquaculture industry is primar-
ily located in the southeast of China (figure S12 in
SI) (Wang et al 2020), where the majority of rice is
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grown, and more than half of aquaculture facilities
been converted from rice paddies (Yuan et al 2019).
Therefore the estimated emissions from rice-growing
regions informed by the prior include contributions
from rice paddies, aquaculture ponds converted from
rice paddies, and to a large extent existing aquacul-
ture ponds. China’s total area of freshwater aquacul-
ture ponds has increased more than 20% from 2010
to 2017 (National Bureau of Statistics of China 2020)
(figure 3(d)). This could explain the opposite trends
between emissions and rice paddy areas.

Waste emissions inferred by the inversion exhibit
a positive trend of 0.06 ± 0.04 Tg CH4 yr−2 between
2010 and 2017 (figure 3(e)). Landfill methane emis-
sions are partly related to the amount and type of
solid waste and management at landfills (Cai et al
2018). Due to increased urbanization, the amount to
solid waste added per year in China has increased by
50% from 2010 to 2017, and its trend accelerates after
2014 (National Bureau of Statistics of China 2020)
(figure 3(f)). In addition, the number of wastewa-
ter facilities has increased by 40% from 2010 to 2014
based on the most recent available data (Zhao et al
2019) (figure 3(f)), which is potentially a significant
source contributing to the waste trend. However we
are not able to distinguish contributions from land-
fills and wastewater because they are both in urban
areas and largely co-located at∼30 km spatial resolu-
tion.Waste emissions are also reversely related to local
management practices (e.g. recovery rate of waste
methane for power generation). This could explain
that waste emissions for 2010–2017 do not increase
as fast as the amount of waste and the number of
facilities.

China’s livestock emissions do not exhibit a sig-
nificant trend (0.01 ± 0.03 Tg CH4 yr−2) over
2010–2017 (figure 3(g)). Livestock emissions include
enteric fermentation and manure management. The
former accounts for more than 90% of China’s total
livestock emissions and is linearly correlated to cattle
population, which does not show a significant trend
over 2010–2017 but suggests a small decrease between
2010 and 2012 (figure 3(h)). The emission trend from
livestock is expected to remain stable in the future
because the growing meat consumption in China is
due to be met by increasing imports (National Bur-
eau of Statistics of China 2020).

4. Conclusions

Effective climate policies aimed at limiting these
emissions will rely on accurate estimates and robust
source attribution. In conclusion, our inverse ana-
lysis suggests that China’s annual methane emis-
sions continue to increase from 2010 to 2017 but
we find that the rate of increase has slowed to
0.3±0.1 Tg CH4 yr−2 for 2012–2017, as compared to
0.77 ± 0.2 Tg CH4 yr−2 from 2010–2012. We show

that emissions from China’s coal mining and rice-
growing regions have remained positive after 2012
despite a decrease in coal production and in the area
harvested for rice. We propose that this may be due
to sources such as fugitive emissions from abandoned
coal mines and the growth in aquaculture systems
in previous rice-growing areas. These sources have
not been widely considered in previous national-scale
studies of emissions from China. However, our work
suggests that they should be carefully considered in
any future emission mitigation efforts, as they may
have had, and will likely continue to have, a substan-
tial influence on China’s overall methane emissions
trends. Future measurements of isotopes of atmo-
spheric CH4 in China should provide improved con-
straints on source attribution (Rigby et al 2012).
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