Jaume Freire-González and Mun S. Ho. 2018. “Environmental fiscal reform and the double dividend: evidence from a dynamic general equilibrium model.” Sustainability, 10, 2. Publisher's VersionAbstract
An environmental fiscal reform (EFR) represents a transition of a taxation system toward one based in environmental taxation, rather than on taxation of capital, labor, or consumption. It differs from an environmental tax reform (ETR) in that an EFR also includes a reform of subsidies which counteract environmental policy. This research details different ways in which an EFR is not only possible but also a good option that provides economic and environmental benefits. We have developed a detailed dynamic CGE model examining 101 industries and commodities in Spain, with an energy and an environmental extension comprising 31 pollutant emissions, in order to simulate the economic and environmental effects of an EFR. The reform focuses on 39 industries related to the energy, water, transport and waste sectors. We simulate an increase in taxes and a reduction on subsidies for these industries and at the same time we use new revenues to reduce labor, capital and consumption taxes. All revenue recycling options provide both economic and environmental benefits, suggesting that the “double dividend” hypothesis can be achieved. After three to four years after implementing an EFR, GDP is higher than the base case, hydrocarbons consumption declines and all analyzed pollutants show a reduction.
Shaojie Song, Meng Gao, Weiqi Xu, Jingyuan Shao, Guoliang Shi, Shuxiao Wang, Yuxuan Wang, Yele Sun, and Michael McElroy. 2018. “Fine particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models.” Atmospheric Chemistry and Physics, 18, Pp. 7423-7438. Publisher's VersionAbstract
pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in North China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA) and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic) to as high as 7 (neutral). In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol phase composition as inputs (i.e., reverse mode) are sensitive to the measurement errors of ionic species and inferred pH values exhibit a bimodal distribution with peaks between −2 and 2 and between 7 and 10. Calculations using total (gas plus aerosol phase) measurements as inputs (i.e., forward mode) are affected much less by the measurement errors, and results are thus superior to those obtained from the reverse mode calculations. Forward mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5) for fine particles in North China winter haze, indicating further that ammonia plays an important role in determining this property. The differences in pH predicted by the forward mode E-AIM and ISORROPIA calculations may be attributed mainly to differences in estimates of activity coefficients for hydrogen ions. The phase state assumed, which can be either stable (solid plus liquid) or metastable (only liquid), does not significantly impact pH predictions of ISORROPIA.
Xinyu Chen, Zhiwei Xu, Chris P Nielsen, and Michael B. McElroy. 2018. “Impacts of fleet types and charging modes for electric vehicles on emissions under different penetrations of wind power.” Nature Energy, 3, Pp. 413-421. Publisher's VersionAbstract
Current Chinese policy promotes the development of both electricity-propelled vehicles and carbon-free sources of power. Concern has been expressed that electric vehicles on average may emit more CO2 and conventional pollutants in China. Here, we explore the environmental implications of investments in different types of electric vehicle (public buses, taxis and private light-duty vehicles) and different modes (fast or slow) for charging under a range of different wind penetration levels. To do this, we take Beijing in 2020 as a case study and employ hourly simulation of vehicle charging behaviour and power system operation. Assuming the slow-charging option, we find that investments in electric private light-duty vehicles can result in an effective reduction in the emission of CO2 at several levels of wind penetration. The fast-charging option, however, is counter-productive. Electrifying buses and taxis offers the most effective option to reduce emissions of NO x , a major precursor for air pollution.
Michael B. McElroy, Xinyu Chen, and Yawen Deng. 2018. “The missing money problem: incorporation of increased resources from wind in a representative US power market.” Renewable Energy, 126, Pp. 126-136. Publisher's VersionAbstract
The paper considers opportunities to reduce emissions of CO2 through increases in commitments to wind in a representative US power market. A model is applied to simulate market operations for different wind levels focusing on implications of the reduction in clearing prices arising due to increasing inputs of zero marginal cost power from wind, a dilemma referred to as the missing money problem. The resulting decrease in income poses problems for existing thermal and nuclear generating systems, at the same time making investments in wind uneconomic in the absence offsetting policy interventions. Two options are considered to subsidize cost: an investment credit (IC) or a subsidy on production (PC). The dilemma could be addressed also with a carbon tax targeted to increase income. It is assumed that the cost associated with the IC and PC options should be borne by the consumer, offsetting benefits from lower wholesale prices. It is assumed further that income from the carbon tax should be rebated to the consumer offsetting related increases in clearing prices. IC and PC options offer opportunities to reduce emissions at low or even negative net costs to the consumer. Higher costs are associated with the option of a carbon tax.
Bo Zhang, Yaowen Zhang, Xueli Zhao, and Jing Meng. 2018. “Non-CO2 Greenhouse Gas Emissions in China 2012: Inventory and Supply Chain Analysis.” Earth's Future, 6. Publisher's VersionAbstract
Reliable inventory information is critical in informing emission mitigation efforts. Using the latest officially released emission data, which is production based, we take a consumption perspective to estimate the non-CO2 greenhouse gas (GHG) emissions for China in 2012. The non-CO2 GHG emissions, which cover CH4, N2O, HFCs, PFCs, and SF6, amounted to 2003.0 Mt. CO2-eq (including 1871.9 Mt. CO2-eq from economic activities), much larger than the total CO2 emissions in some developed countries. Urban consumption (30.1%), capital formation (28.2%), and exports (20.6%) derived approximately four fifths of the total embodied emissions in final demand. Furthermore, the results from structural path analysis help identify critical embodied emission paths and key economic sectors in supply chains for mitigating non-CO2 GHG emissions in Chinese economic systems. The top 20 paths were responsible for half of the national total embodied emissions. Several industrial sectors such as Construction, Production and Supply of Electricity and SteamManufacture of Food and Tobacco and Manufacture of Chemicalsand Chemical Products played as the important transmission channels. Examining both production- and consumption-based non-CO2 GHG emissions will enrich our understanding of the influences of industrial positions, final consumption demands, and trades on national non-CO2 GHG emissions by considering the comprehensive abatement potentials in the supply chains.
Changyi Liu, Yang Wang, and Rong Zhu. 2017. “Assessment of the economic potential of China's onshore wind electricity.” Resources, Conservation and Recycling, 121, Pp. 33-39. Publisher's VersionAbstract

The assessment of the economic potential of wind electricity is of critical importance for wind power development in China. Based on the wind resource data between 1995 and 2014 and geological assumptions, this paper calculates economic potential of China’s onshore wind electricity. Furthermore, it builds an econometric model to update the net-present-value model, based on a survey sample of various wind farms. Results show that the economic potential of China’s onshore wind electricity is 8.13 PWh per year with a feed-in-tariff price at 0.60 yuan (about 9.6 U.S. cents) per kilowatt-hour.

Archana Dayalu. 2017. “Exploring the wide net of human energy systems: From carbon dioxide emissions in China to hydraulic fracturing chemicals usage in the United States.” Harvard University Department of Earth and Planetary Sciences.
Xi Lu and Michael B. McElroy. 2017. “Global potential for wind generated electricity.” In Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines, edited by Trevor M. Letcher. Amsterdam: Elsevier. Publisher's Version
Xinyu Chen, Michael B. McElroy, and Chongqing Kang. 2017. “Integrated energy systems for higher wind penetration in China: Formulation, implementation, and impacts.” IEEE Transactions on Power Systems. Publisher's VersionAbstract
With the largest installed capacity in the world, wind power in China is experiencing a ∼20% curtailment. The inflexible combined heat and power (CHP) has been recognized as the major barrier for integrating the wind source. The approach to reconcile the conflict between inflexible CHP units and variable wind power in Chinese energy system is yet un-clear. This paper explores the technical and economic feasibility of deploying the heat storage tanks and electric boilers under typical power grids and practical operational regulations. A mixed integer linear optimization model is proposed to simulate an integrated power and heating energy systems, including a CHP model capable of accounting for the commitment decisions and non-convex energy generation constraints. The model is applied to simulate a regional energy system (Jing-Jin-Tang) covering 100-million population, with hourly resolution over a year, incorporating actual data and operational regulations. The results project an accelerating increase in wind curtailment rate at elevated wind penetration. Investment for wind breaks-even at 14% wind penetration. At such penetration, the electric boiler (with heat storage) is effective in reducing wind curtailment. The investment in electric boilers is justified on a social economic basis, but the revenues for different stakeholders are not distributed evenly.
Haikun Wang, Yanxu Zhang, Xi Lu, Weimo Zhu, Chris P. Nielsen, Jun Bi, and Michael B. McElroy. 2017. “Trade‐driven relocation of air pollution and health impacts in China.” Nature Communications, 8, 738. Publisher's Version
Nan Zhong, Jing Cao, and Yuzhu Wang. 2017. “Traffic congestion, ambient air pollution and health: Evidence from driving restrictions in Beijing.” Journal of the Association of Environmental and Resource Economists, 4, 3, Pp. 821–856. Publisher's VersionAbstract

Vehicles have recently overtaken coal to become the largest source of air pollution in urban China. Research on mobile sources of pollution has foundered due both to inaccessibility of Chinese data on health outcomes and strong identifying assumptions. To address these, we collect daily ambulance call data from the Beijing Emergency Medical Center and combine them with an idiosyncratic feature of a driving restriction policy in Beijing that references the last digit of vehicles’ license plate numbers. Because the number 4 is considered unlucky by many in China, it tends to be avoided on license plates. As a result, days on which the policy restricts license plates ending in 4 unintentionally allow more vehicles in Beijing. Leveraging this variation, we find that traffic congestion is indeed 22% higher on days banning 4 and that 24-hour average concentration of NO2 is 12% higher. Correspondingly, these short term increases in pollution increase ambulance calls by 12% and 3% for fever and heart related symptoms, while no effects are found for injuries. These findings suggest that traffic congestion has substantial health externalities in China but that they are also responsive to policy. 

Michael B. McElroy and Xinyu Chen. 2017. “Wind and solar power in the United States: Status and prospects.” CSEE Journal of Power and Energy Systems, 3, 1.Abstract


The United States has committed to reduce its greenhouse gas emissions by 26%–28% by 2025 and by 83% by 2050 relative to 2005. Meeting these objectives will require major investments in renewable energy options, particularly wind and solar. These investments are promoted at the federal level by a variety of tax credits, and at the state level by requirements for utilities to include specific fractions of renewable energy in their portfolios (Renewable Portfolio Standards) and by opportunities for rooftop PV systems to transfer excess power to utilities through net metering, allowing meters to operate in reverse. The paper discusses the current status of these incentives.


Peter Sherman, Xinyu Chen, and Michael B. McElroy. 2017. “Wind-generated electricity in China: Decreasing potential, inter-annual variability, and association with climate change.” Scientific Reports, 7. Publisher's VersionAbstract
China hosts the world’s largest market for wind-generated electricity. The financial return and carbon reduction benefits from wind power are sensitive to changing wind resources. Wind data derived from an assimilated meteorological database are used here to estimate what the wind generated electricity in China would have been on an hourly basis over the period 1979 to 2015 at a geographical resolution of approximately 50 km × 50 km. The analysis indicates a secular decrease in generating potential over this interval, with the largest declines observed for western Inner Mongolia (15 ± 7%) and the northern part of Gansu (17 ± 8%), two leading wind investment areas. The decrease is associated with long-term warming in the vicinity of the Siberian High (SH), correlated also with the observed secular increase in global average surface temperatures. The long-term trend is modulated by variability relating to the Pacific Decadal Oscillation (PDO) and the Arctic Oscillation (AO). A linear regression model incorporating indices for the PDO and AO, as well as the declining trend, can account for the interannual variability of wind power, suggesting that advances in long-term forecasting could be exploited to markedly improve management of future energy systems.
Yinmin Xia, Yu Zhao, and Chris P. Nielsen. 2016. “Benefits of China's efforts in gaseous pollutant control indicated by bottom-up emissions and satellite observations 2000-2014.” Atmospheric Environment, 136, July, Pp. 43-53. Publisher's VersionAbstract

To evaluate the effectiveness of national air pollution control policies, the emissions of SO2, NOX, CO and CO2 in China are estimated using bottom-up methods for the most recent 15-year period (2000–2014). Vertical column densities (VCDs) from satellite observations are used to test the temporal and spatial patterns of emissions and to explore the ambient levels of gaseous pollutants across the country. The inter-annual trends in emissions and VCDs match well except for SO2. Such comparison is improved with an optimistic assumption in emission estimation that the emission standards for given industrial sources issued after 2010 have been fully enforced. Underestimation of emission abatement and enhanced atmospheric oxidization likely contribute to the discrepancy between SO2 emissions and VCDs. As suggested by VCDs and emissions estimated under the assumption of full implementation of emission standards, the control of SO2 in the 12th Five-Year Plan period (12th FYP, 2011–2015) is estimated to be more effective than that in the 11th FYP period (2006–2010), attributed to improved use of flue gas desulfurization in the power sector and implementation of new emission standards in key industrial sources. The opposite was true for CO, as energy efficiency improved more significantly from 2005 to 2010 due to closures of small industrial plants. Iron & steel production is estimated to have had particularly strong influence on temporal and spatial patterns of CO. In contrast to fast growth before 2011 driven by increased coal consumption and limited controls, NOX emissions decreased from 2011 to 2014 due to the penetration of selective catalytic/non-catalytic reduction systems in the power sector. This led to reduced NO2 VCDs, particularly in relatively highly polluted areas such as the eastern China and Pearl River Delta regions. In developed areas, transportation is playing an increasingly important role in air pollution, as suggested by the increased ratio of NO2 to SO2 VCDs. For air quality in mega cities, the inter-annual trends in emissions and VCDs indicate that surrounding areas are more influential in NO2 level for Beijing than those for Shanghai.

Challenges faced by China compared with the US in developing wind power
Xi Lu, Michael B. McElroy, Wei Peng, Shiyang Liu, Chris P. Nielsen, and Haikun Wang. 2016. “Challenges faced by China compared with the US in developing wind power.” Nature Energy, 1, 6. Publisher's VersionAbstract

In the 21st Conference of the Parties to the UNFCCC held in Paris in December 2015, China pledged to peak its carbon emissions and increase non-fossil energy to 20% by 2030 or earlier. Expanding renewable capacity, especially wind power, is a central strategy to achieve these climate goals. Despite greater capacity for wind installation in China compared to the US (145.1 versus 75.0 GW), less wind electricity is generated in China (186.3 versus 190.9 TWh). Here, we quantify the relative importance of the key factors accounting for the unsatisfactory performance of Chinese wind farms. Different from the results in earlier qualitative studies, we find that the difference in wind resources explains only a small fraction of the present China-US difference in wind power output (17.9% in 2012); the curtailment of wind power, differences in turbine quality, and delayed connection to the grid are identified as the three primary factors (respectively 49.3%, 50.2%, and 50.3% in 2012). Improvements in both technology choices and the policy environment are critical in addressing these challenges. 

Lu et al. is the cover article of this issue of Nature Energy. It is also subject of a "News and Views" commentary in the same issue, by Joanna I. Lewis.

Energy and Climate: Vision for the Future
Michael B. McElroy. 2016. Energy and Climate: Vision for the Future. 1st ed. New York: Oxford University Press. Publisher's VersionAbstract

The climate of our planet is changing at a rate unprecedented in recent human history. The energy absorbed from the sun exceeds what is returned to space. The planet as a whole is gaining energy. The heat content of the ocean is increasing; the surface and atmosphere are warming; mid-latitude glaciers are melting; sea level is rising. The Arctic Ocean is losing its ice cover. None of these assertions are based on theory but on hard scientific fact. Given the science-heavy nature of climate change, debates and discussions have not played as big a role in the public sphere as they should, and instead are relegated to often misinformed political discussions and inaccessible scientific conferences. Michael B. McElroy, an eminent Harvard scholar of environmental studies, combines both his research chops and pedagogical expertise to present a book that will appeal to the lay reader but still be grounded in scientific fact. 

In Energy and Climate: Vision for the Future, McElroy provides a broad and comprehensive introduction to the issue of energy and climate change intended to be accessible for the general reader. The book includes chapters on energy basics, a discussion of the contemporary energy systems of the US and China, and two chapters that engage the debate regarding climate change. The perspective is global but with a specific focus on the US and China recognizing the critical role these countries must play in addressing the challenge of global climate change. The book concludes with a discussion of initiatives now underway to at least reduce the rate of increase of greenhouse gas emissions, together with a vision for a low carbon energy future that could in principle minimize the long-term impact of energy systems on global climate.

Qing Yang, Yingquan Chen, Haiping Yang, and Hanping Chen. 2016. “Greenhouse gas emissions of a biomass-based pyrolysis plant in China.” Renewable and Sustainable Energy Reviews, 53, January, Pp. 1580-1590. Publisher's VersionAbstract

Biomass pyrolysis offers an alternative to industrial coal-fired boilers and utilizes low temperature and long residence time to produce syngas, bio-oil and biochar. Construction of biomass-based pyrolysis plants has recently been on the rise in rural China necessitating research into the greenhouse gas emission levels produced as a result. Greenhouse gas emission intensity of a typical biomass fixed-bed pyrolysis plant in China is calculated as 1.55E−02 kg CO2-eq/MJ. Carbon cycle of the whole process was investigated and found that if 41.02% of the biochar returns to the field, net greenhouse gas emission is zero indicating the whole carbon cycle may be renewable. A biomass pyrolysis scenario analysis was also conducted to assess exhaust production, transportation distance and the electricity-generation structure for background information applied in the formulation of national policy.

Jing Cao, Mun S. Ho, and Huifang Liang. 2016. “Household energy demand in urban China: Accounting for regional prices and rapid economic change.” The Energy Journal, 37. Publisher's VersionAbstract

Understanding the rapidly rising demand for energy in China is essential to efforts to reduce the country's energy use and environmental damage. In response to rising incomes and changing prices and demographics, household use of various fuels, electricity and gasoline has changed dramatically in China. In this paper, we estimate both income and price elasticities for various energy types using Chinese urban household micro-data collected by National bureau of Statistics, by applying a two-stage budgeting AIDS model. We find that total energy is price and income inelastic for all income groups after accounting for demographic and regional effects. Our estimated electricity price elasticity ranges from - 0.49 to -0.57, gas price elasticity ranges from -0.46 to -0.94, and gasoline price elasticity ranges from -0.85 to -0.94. Income elasticity for various energy types range from 0.57 to 0.94. Demand for coal is most price and income elastic among the poor, whereas gasoline demand is elastic for the rich.

Rong Xie, Clive E. Sabel, Xi Lu, Weimo Zhu, Haidong Kan, Chris P. Nielsen, and Haikun Wang. 2016. “Long-term trend and spatial pattern of PM2.5-induced premature mortality in China.” Environment International, 97, Pp. 180-186. Publisher's VersionAbstract

With rapid economic growth, China has witnessed increasingly frequent and severe haze and smog episodes over the past decade, posing serious health impacts to the Chinese population, especially those in densely populated city clusters. Quantification of the spatial and temporal variation of health impacts attributable to ambient fine particulate matter (PM2.5) has important implications for China's policies on air pollution control. In this study, we evaluated the spatial distribution of premature deaths in China between 2000 and 2010 attributable to ambient PM2.5 in accord with the Global Burden of Disease based on a high resolution population density map of China, satellite retrieved PM2.5 concentrations, and provincial health data. Our results suggest that China's anthropogenic ambient PM2.5 led to 1,255,400 premature deaths in 2010, 42% higher than the level in 2000. Besides increased PM2.5 concentration, rapid urbanization has attracted large population migration into the more developed eastern coastal urban areas, intensifying the overall health impact. In addition, our analysis implies that health burdens were exacerbated in some developing inner provinces with high population density (e.g. Henan, Anhui, Sichuan) because of the relocation of more polluting and resource-intensive industries into these regions. In order to avoid such national level environmental inequities, China's regulations on PM2.5 should not be loosened in inner provinces. Furthermore policies should create incentive mechanisms that can promote transfer of advanced production and emissions control technologies from the coastal regions to the interior regions.

Meiyu Guo, Xi Lu, Chris P. Nielsen, Michael B. McElroy, Wenrui Shi, Yuntian Chen, and Xuan Yu. 2016. “Prospects for shale gas production in China: Implications for water demand.” Renewable and Sustainable Energy Reviews, 66, December, Pp. 742-750. Publisher's VersionAbstract

Development of shale gas resources is expected to play an important role in China's projected transition to a low-carbon energy future. The question arises whether the availability of water could limit this development. The paper considers a range of scenarios to define the demand for water needed to accommodate China's projected shale gas production through 2020. Based on data from the gas field at Fuling, the first large-scale shale gas field in China, it is concluded that the water intensity for shale gas development in China (water demand per unit lateral length) is likely to exceed that in the US by about 50%. Fuling field would require a total of 39.9–132.9 Mm3 of water to achieve full development of its shale gas, with well spacing assumed to vary between 300 and 1000 m. To achieve the 2020 production goal set by Sinopec, the key Chinese developer, water consumption is projected to peak at 7.22 Mm3 in 2018. Maximum water consumption would account for 1% and 3%, respectively, of the available water resource and annual water use in the Fuling district. To achieve China's nationwide shale gas production goal set for 2020, water consumption is projected to peak at 15.03 Mm3 in 2019 in a high-use scenario. It is concluded that supplies of water are adequate to meet demand in Fuling and most projected shale plays in China, with the exception of localized regions in the Tarim and Jungger Basins.