In Press
Jing Cao, Mun Sing Ho, Yating Li, Richard G. Newell, and William A. Pizer. In Press. “Chinese residential electricity consumption estimation and forecast using micro-data.” Resource and Energy Economics. Publisher's VersionAbstract
Based on econometric estimation using data from the Chinese Urban Household Survey, we develop a preferred forecast range of 85–143 percent growth in residential per capita electricity demand over 2009–2025. Our analysis suggests that per capita income growth drives a 43% increase, with the remainder due to an unexplained time trend. Roughly one-third of the income-driven demand comes from increases in the stock of specific major appliances, particularly AC units. The other two-thirds comes from non-specific sources of income-driven growth and is based on an estimated income elasticity that falls from 0.28 to 0.11 as income rises. While the stock of refrigerators is not projected to increase, we find that they contribute nearly 20 percent of household electricity demand. Alternative plausible time trend assumptions are responsible for the wide range of 85–143 percent. Meanwhile we estimate a price elasticity of demand of −0.7. These estimates point to carbon pricing and appliance efficiency policies that could substantially reduce demand.
Xingning Han, Xinyu Chen, Michael B. McElroy, Shiwu Liao, and Chris P. Nielsen. In Press. “Modeling Formulation and Validation for Accelerated Simulation and Flexibility Assessment on Large Scale Power Systems under Higher Renewable Penetrations.” Applied Energy.
Chenghe Guan. In Press. “Spatial distribution of high-rise buildings and its relationship to public transit development in Shanghai.” Transport Policy. Publisher's VersionAbstract

The relationship between dense urban development, often represented by high-rise buildings, and its location vis-à-vis metro stations reflects the connection between transportation infrastructure and land use intensity. Existing literature on high-rise buildings has focused either on developed countries or on cities where urban and public transit developments have occurred in an uncoordinated manner. This paper examines the following questions: What is the spatial proximity and spatial correlation between high-rise buildings and metro stations in different stages of development in various parts of the city? What were some of the factors that resulted in the observed patterns? The results suggest that buildings constructed after 2000 and buildings within the urban core/Shanghai Proper districts had a greater spatial proximity to the metro stations. However, the spatial correlation, measured by the number of high-rise buildings within a 500-meter buffer from the nearest metro stations and the time-distance to these stations, is stronger in the outer districts than in the urban core. These differences can be accounted for by Shanghai’s stages of urban development, the existence of metro infrastructure when high-rise development was undertaken, and the city’s land use policies. This case study sheds light on the relationship between high-density developments and metro systems in other large cities in China and other developing countries where rapid urban development coincides with the establishment of a comprehensive public transit system.

Jing Cao, Mun S. Ho, Dale W. Jorgenson, and Chris P. Nielsen. Submitted. “China’s Emissions Trading System and an ETS-Carbon Tax Hybrid.” Energy Economics.
Chenghe Guan, Sumeeta Srinivasan, and Chris P. Nielsen. Submitted. “Does neighborhood form influence low-carbon transportation in China?” Transportation Research Part D: Transport and Environment.
Jing Cao, Mun S. Ho, Wenhao Hu, and Dale Jorgenson. Submitted. “Household Consumption in China.” China Economic Review.
Chenghe Guan and Ann Forsyth. Submitted. “The influence of urban form and socio-demographics on active transport: a 40 neighborhoods study in Chengdu, China.” Urban Studies.
Jing Cao, Mun S. Ho, Wenhao Hu, and Dale W. Jorgenson. Submitted. “Urban Household Consumption in China.” European Economic Review.
Jing Cao, Mun S. Ho, Wenhao Hu, Dale W. Jorgenson, and Qiong Zhang. Submitted. “Welfare and Inequality Measures for China Based on Consumption.” International Economic Review.
Sumeeta Srinivasan, Chenghe Guan, and Chris P. Nielsen. Submitted. “Built environment, income and travel behavior: Changes in Chengdu 2005-2016.” Sustainable Transport.
Archana Dayalu, J. William Munger, Yuxuan Wang, Steven C. Wofsy, Yu Zhao, Thomas Nehrkorn, Chris P. Nielsen, Michael B. McElroy, and Rachel Y.-W. Chang. Submitted. “Carbon dioxide emissions in northern China based on atmospheric observations from 2005 to 2009.” Atmospheric Chemistry and Physics. Available on ACP Discussions
Chenghe Guan and Peter G. Rowe. Submitted. “On China's Urban Block Community.” Journal of Urban Design.
Xi Lu, Liang Cao, Haikun Wang, Wei Peng, Jia Xing, Shuxiao Wang, Siyi Cai, Bo Shen, Qing Yang, Chris P. Nielsen, and Michael B. McElroy. Submitted. “Gasification of coal and biomass: a net carbon-negative power source for environmental-friendly electricity generation in China.” Proceedings of the National Academy of Sciences.
Xueli Zhao, Rong Ma, Xiaofang Wu, Chenghe Guan, Chris P. Nielsen, and Bo Zhang. Submitted. “Linking Agricultural GHG Emissions to Global Trade Network.” Environmental Science & Technology.
Jiajun Lv, Xinyu Chen, Michael B. McElroy, Chongqing Kang, Mark O’Malley, Qiuwei Wu, and Zhaohong Bie. Submitted. “The optimal investment of flexible heating sources for better integrating wind power in CHP intensive energy systems.” IEEE Transactions on Power Systems.
S.J. Song, M. Gao, W.Q. Xu, Y.L. Sun, D.R. Worsnop, J.T. Jayne, Y.Z. Zhang, L. Zhu, M. Li, Z. Zhou, C.L. Cheng, Y.B. Lv, Y. Wang, W. Peng, X.B. Xu, N. Lin, Y.X. Wang, S.X. Wang, J. W. Munger, D. Jacob, and M.B. McElroy. Submitted. “Possible heterogeneous hydroxymethanesulfonate (HMS) chemistry in northern China winter haze and implications for rapid sulfate formation.” Atmospheric Chemistry and Physics. Available on ACP Discussions
Meng Gao, Peter Sherman, Shaojie Song, Yueyue Yu, Zhiwei Wu, and Michael B. McElroy. Submitted. “Seasonal Prediction of Indian Wintertime Aerosol Pollution using the Ocean Memory Effect.” Science Advances.
James K. Hammitt, Fangli Geng, Xiaoqi Guo, and Chris P. Nielsen. Submitted. “Valuing Mortality Risk in China: Comparing Stated-Preference Estimates from 2005 and 2016.” Journal of Risk & Uncertainty.
Mengyao Han, Bo Zhang, Yuqing Zhang, and Chenghe Guan. 2019. “Agricultural CH4 and N2O emissions of major economies: Consumption-vs. production-based perspectives.” Journal of Cleaner Production, 210, Pp. 276-286. Publisher's VersionAbstract

Agriculture is one of the most important sectors for global anthropogenic methane (CH4) and nitrous oxide (N2O) emissions. While much attention has been paid to production-side agricultural non-CO2 greenhouse gas (ANGHG) emissions, less is known about the emissions from the consumption-based perspective. This paper aims to explore the characteristics of agricultural CH4 and N2O emissions of global major economies by using the latest emission data from the Food and Agriculture Organization Corporate Statistical Database (FAOSTAT) and the recently available global multi-regional input-output model from the World Input-Output Database (WIOD). The results show that in 2014, the 42 major economies together accounted for 60.7% and 65.0% of global total direct and embodied ANGHG emissions, respectively. The consumption-based ANGHG emissions in the US, Japan, and the EU were much higher than their production-based emissions, while the converse was true for Brazil, Australia, and India. The global-average embodied ANGHG emissions per capita was 0.7 t CO2-eq, but major developing countries such as China, India, Indonesia and Mexico were all below this average value. We find that the total transfer of embodied ANGHG emissions via international trade was 622.4 Mt CO2-eq, 11.9% of the global total. China was the largest exporter of embodied ANGHG emissions, while the US was the largest importer. Most developed economies were net importers of embodied emissions. Mexico-US, China-US, China-EU, China-Japan, China-Russia, Brazil-EU, India-EU and India-US formed the main bilateral trading pairs of embodied emission flows. Examining consumption-based inventories can be useful for understanding the impacts of final demand and international trade on agricultural GHG emissions and identifying appropriate mitigation potentials along global supply chains.

Yaowen Zhang, Ling Shao, Xudong Sun, Mengyao Han, Xueli Zhao, Jing Meng, Bo Zhang, and Han Qiao. 2018. “Outsourcing natural resource requirements within China.” Journal of Environmental Management, 228, Pp. 292-302. Publisher's VersionAbstract

Consumption demands are final drivers for the extraction and allocation of natural resources. This paper investigates demand-driven natural resource requirements and spatial outsourcing within China in 2012 by using the latest multi-regional input-output model. Exergy is adopted as a common metric for natural resources input. The total domestic resource exergy requirements amounted to 125.5 EJ, of which the eastern area contributed the largest share of 44.5%, followed by the western area (23.9%), the central area (23.0%) and the northeastern area (8.6%). Investment was the leading final demand category, accounting for 52.9% (66.4 EJ) of national total embodied resource use (ERU). The total trade volumes of embodied resource were equivalent to 69.6% of the total direct resource input (DRI), mostly transferred from the central and western regions such as Inner Mongolia, Shanxi, Shaanxi and Xinjiang to the eastern regions such as Jiangsu, Zhejiang, Guangdong and Shanghai. The northeastern and eastern areas had physical net imports of 1213.5 PJ and 38452.6 PJ, while the central and western inland areas had physical net exports of 6364.5 PJ and 33301.5 PJ, respectively. Shanghai, Beijing, Zhejiang, Jiangsu and Guangdong had prominent ERUs which respectively were 101.6, 12.6, 11.7, 8.4 and 4.3 times of their DRIs. The ERUs of Inner Mongolia, Shaanxi, Shanxi, Ningxia and Guizhou were equal to only 17.6%, 25.3%, 27.9%, 46.0% and 50.2% of their DRIs, respectively. Regional uneven development resulted in imbalanced resource requirements across China. The findings can provide a deep understanding of China's resource-driven economic development mode, and contribute to reducing regional resource footprints and their environment outcomes under the “new normal economy”.