In Press
Yu Zhao, Mengxiao Xi, Qiang Zhang, Zhaoxin Dong, Wen Xu, Jia Xing, Xuejun Liu, Chris P. Nielsen, Yang Liu, Yuepeng Pan, and Lei Zhang. In Press. “Effect of spatiotemporal emission change on Chinese air pollution source-sink relationship.” Nature Geoscience.
Jianglong Li, Mun S. Ho, Chunping Xie, and Nicholas Stern. 2022. “China's flexibility challenge in achieving carbon neutrality by 2060.” Renewable and Sustainable Energy Reviews, 158, April, Pp. 112112.Abstract
China, with a heavy dependence on coal power, has announced a clear goal of carbon neutrality by 2060. Electrification of final energy use and high penetration of renewable energy are essential to achieve this. The resulting growth of intermittent renewables and changes in demand curve profiles require greater flexibility in the power system for real-time balancing – greater ability of generators and consumers to ramp up and down. However, the plan and market system with regulated prices makes this challenging. We discuss the options to improve flexibility, including 1) increasing supply-side flexibility, through retrofitting existing power plants to boost their responsiveness; 2) promoting flexibility from power grids, through building an efficient power grid with inter-provincial and inter-regional transmission capacity to balance spatial mismatch, given that China has a vast territory; 3) encouraging demand flexibility, through demand-response measures to enable demand shifting over time and space to address fluctuations in renewable energy generation; and 4) providing flexibility from energy storage. We consider policies to achieve this, in particular, power market reforms to unlock the flexibility potential of these sources. Regulated electricity prices and lack of auxiliary services markets are major obstacles and we discuss how markets in other countries provide lessons in providing incentives for a more flexible system.
Faan Chen, Chris P. Nielsen, Jiaorong Wu, and Xiaohong Chen. 2022. “Examining socio-spatial differentiation under housing reform and its implications for mobility in urban China.” Habitat International, 119, January 2022, Pp. 102498. Publisher's VersionAbstract
Housing reform in socialist China has incurred considerable restructuring and transformation of urban space and society. Yet its specific socio-spatial outcomes have not been fully investigated from the perspective of housing type at the meso- and micro-levels. This study attempts to fill the gap by examining the nature and magnitude of the consequences of housing reform and the corresponding effects on mobility. Specifically, based on census data and a mobility survey, this paper combines statistical breakdowns and structural equation modeling to capture the socio-spatial differentiation of urban structure resulting from housing reform and its influences on individual vehicle kilometers traveled (VKT) and transportation walking. The results reveal that: (1) different types of housing tend to feature internally homogeneous populations in terms of socio-economic composition and socio-psychological condition, with pronounced social stratification; (2) residents in different types of housing display dramatically different travel styles, with substantial mobility inequities; (3) social differentiation appears to have spatial determinants; in particular spatial segregation contributes to increasing social exclusion; (4) the effects of spatial and social characteristics on mobility are led by housing type; and (5) individual mobility patterns are shaped by the joint influences of spatial and social dimensions of housing differentiation. The findings contribute to further understanding of socio-spatial differentiation in countries with a transitional housing market, suggesting that the design of land-use policies should recognize their social effects and that urban mobility planning practices should deliver sustainability that serves a diverse population, including in particular disadvantaged groups in public and replacement housing. This study serves as a mirror to observe the urban transition compared to other political economies and adds additional richness and diversity to the theoretical debates on the issue of socio-spatial differentiation and empirical evidence on residential and mobility inequities across global contexts.
Jianglong Li and Mun S. Ho. 2022. “Indirect cost of renewable energy: Insights from dispatching.” Energy Economics, 105, January 2022, Pp. 105778. Publisher's VersionAbstract
The rapidly falling costs of renewable energy has made them the focus of efforts in making a low-carbon transition. However, when cheap large-scale energy storage is not available, the variability of renewables implies that fossil-based technologies have to ramp up-and-down frequently to provide flexibility for matching electricity demand and supply. Here we provide a study on the indirect cost of renewable energy due to thermal efficiency loss of coal plants with such ramping requirements. Using monthly panel data for China, we show that higher renewable share is associated with fewer operating hours of coal-fired units (COHOUR). We use an instrumental variable depending on natural river flows to identify the causal effect of reduced COHOURs in raising the heat rate of coal-fired units. Specifically, a 1 percentage point increase in the share of renewables leads to a 6.4 h reduction per month, and a reduction of one COHOUR results in a 0.09 gce/kWh increase of gross heat rate (+0.03%). We estimate that the thermal efficiency loss indicates 4.77 billion US dollars of indirect cost of renewables in 2019, or 9.44 billion if we include the social cost of carbon emissions. These results indicate that we should consider the indirect impacts of renewables on total coal use and the importance of increasing flexibility of the system.
Haiyang Lin, Caiyun Bian, Yu Wang, Hailong Li, Qie Sun, and Fredrik Wallen. 2022. “Optimal planning of intra-city public charging stations.” Energy, 238, Part C, Pp. 121948. Publisher's VersionAbstract
Intra-city Public Charging Stations (PCSs) play a crucial role in promoting the mass deployment of Electric Vehicles (EVs). To motivate the investment on PCSs, this work proposes a novel framework to find the optimal location and size of PCSs, which can maximize the benefit of the investment. The impacts of charging behaviors and urban land uses on the income of PCSs are taken into account. An agent-based trip chain model is used to represent the travel and charging patterns of EV owners. A cell-based geographic partition method based on Geographic Information System is employed to reflect the influence of land use on the dynamic and stochastic nature of EV charging behaviors. Based on the distributed charging demand, the optimal location and size of PCSs are determined by mixed-integer linear programming. Västerås, a Swedish city, is used as a case study to demonstrate the model's effectiveness. It is found that the charging demand served by a PCS is critical to its profitability, which is greatly affected by the charging behavior of drivers, the location and the service range of PCS. Moreover, charging price is another significant factor impacting profitability, and consequently the competitiveness of slow and fast PCSs.
Shaodan Huang, Shaojie Song, Chris P. Nielsen, Yuqiang Zhang, Jianyin Xiong, Louise B. Weschler, Shaodong Xie, and Jing Li. 2022. “Residential building materials: An important source of ambient formaldehyde in mainland China.” Environment International, 158, January, Pp. 106909. Publisher's VersionAbstract
This study investigates the contribution of formaldehyde from residential building materials to ambient air in mainland China. Based on 265 indoor field tests in 9 provinces, we estimate that indoor residential sources are responsible for 6.66% of the total anthropogenic formaldehyde in China’s ambient air (range for 31 provinces: 1.88–18.79%). Residential building materials rank 6th among 81 anthropogenic sources (range: 2nd–10th for 31 provinces). Emission intensities show large spatial variability between and within regions due to different residential densities, emission characteristics of building materials, and indoor thermal conditions. Our findings indicate that formaldehyde from the indoor environment is a significant source of ambient formaldehyde, especially in urban areas. This study will help to more accurately evaluate exposure to ambient formaldehyde and its related pollutants, and will assist in formulating policies to protect air quality and public health.
Xi Lu, Shi Chen, Chris P. Nielsen, Chongyu Zhang, Jiacong Li, Xu He, Ye Wu, Shuxiao Wang, Feng Song, Chu Wei, Kebin He, Michael P. McElroy, and Jiming Hao. 2021. “Combined solar power and storage as cost-competitive and grid-compatible supply for China’s future carbon-neutral electricity system.” Proceedings of the National Academy of Sciences, 118, October, Pp. 42. Publisher's VersionAbstract

As the world’s largest CO2 emitter, China’s ability to decarbonize its energy system strongly affects the prospect of achieving the 1.5 °C limit in global, average surface-temperature rise. Understanding technically feasible, cost-competitive, and grid-compatible solar photovoltaic (PV) power potentials spatiotemporally is critical for China’s future energy pathway. This study develops an integrated model to evaluate the spatiotemporal evolution of the technology-economic-grid PV potentials in China during 2020 to 2060 under the assumption of continued cost degression in line with the trends of the past decade. The model considers the spatialized technical constraints, up-to-date economic parameters, and dynamic hourly interactions with the power grid. In contrast to the PV production of 0.26 PWh in 2020, results suggest that China’s technical potential will increase from 99.2 PWh in 2020 to 146.1 PWh in 2060 along with technical advances, and the national average power price could decrease from 4.9 to 0.4 US cents/kWh during the same period. About 78.6% (79.7 PWh) of China’s technical potential will realize price parity to coal-fired power in 2021, with price parity achieved nationwide by 2023. The cost advantage of solar PV allows for coupling with storage to generate cost-competitive and grid-compatible electricity. The combined systems potentially could supply 7.2 PWh of grid-compatible electricity in 2060 to meet 43.2% of the country’s electricity demand at a price below 2.5 US cents/kWh. The findings highlight a crucial energy transition point, not only for China but for other countries, at which combined solar power and storage systems become a cheaper alternative to coal-fired electricity and a more grid-compatible option.

Lu et al. is the cover article of this October issue of PNAS. Read the Research Brief.
Xinyu Chen, Yaxing Liu, Qin Wang, Jiajun Lv, Jinyu Wen, Xia Chen, Chongqing Kang, Shijie Cheng, and Michael McElroy. 2021. “Pathway toward carbon-neutral electrical systems in China by mid-century with negative CO2 abatement costs informed by high-resolution modeling.” Joule, 5, 10 (20 October), Pp. 2715-2741. Publisher's VersionAbstract
China, the largest global CO2 emitter, recently announced ambitious targets for carbon neutrality by 2060. Its technical and economic feasibility is unclear given severe renewable integration barriers. Here, we developed a cross-sector, high-resolution assessment model to quantify optimal energy structures on provincial bases for different years. Hourly power system simulations for all provinces for a full year are incorporated on the basis of comprehensive grid data to quantify the renewable balancing costs. Results indicate that the conventional strategy of employing local wind, solar, and storage to realize 80% renewable penetration by 2050 would incur a formidable decarbonization cost of $27/ton despite lower levelized costs for renewables. Coordinated deployment of renewables, ultra-high-voltage transmissions, storages, Power-to-gas and slow-charging electric vehicles can reduce this carbon abatement cost to as low as $−25/ton. Were remaining emissions removed by carbon capture and sequestration technologies, achieving carbon neutrality could be not only feasible but also cost-competitive post 2050.
Yingying Lyu and Ann Forsyth. 2021. “Planning, aging, and loneliness: Reviewing evidence about built environment effects.” Journal of Planning Literature, August 2021. Publisher's VersionAbstract
Large numbers of people in many countries report being lonely with rates highest among the very old. Does the built environment affect loneliness among older people and if so, how? Using a scoping review, we examined associations between loneliness and built environments at the block, neighborhood, and city scales. The (1) neighborhood environment has received most attention. Research has also examined (2) urban contexts, (3) housing, and (4) transportation access. Findings are mixed with the stronger evidence that local resources, walkability, overall environment quality, housing options, and nearby transportation alternatives can help combat loneliness.
Shaojie Song, Haiyang Lin, Peter Sherman, Xi Yang, Chris P. Nielsen, Xinyu Chen, and Michael B. McElroy. 2021. “Production of hydrogen from offshore wind in China and cost-competitive supply to Japan.” Nature Communications, 12, 2021, Pp. 6953. Publisher's VersionAbstract
The Japanese government has announced a commitment to net-zero greenhouse gas emissions by 2050. It envisages an important role for hydrogen in the nation’s future energy economy. This paper explores the possibility that a significant source for this hydrogen could be produced by electrolysis fueled by power generated from offshore wind in China. Hydrogen could be delivered to Japan either as liquid, or bound to a chemical carrier such as toluene, or as a component of ammonia. The paper presents an analysis of factors determining the ultimate cost for this hydrogen, including expenses for production, storage, conversion, transport, and treatment at the destination. It concludes that the Chinese source could be delivered at a volume and cost consistent with Japan’s idealized future projections.
Jonathan D'Souza, Felix Prasanna, Luna-Nefeli Valayannopoulos-Akrivou, Peter John Sherman, Elise Penn, Shaojie Song, Alexander Archibald, and Michael B McElroy. 2021. “Projected changes in seasonal and extreme summertime temperature and precipitation in India in response to COVID-19 recovery emissions scenarios.” Environmental Research Letters. Publisher's VersionAbstract
Fossil fuel and aerosol emissions have played important roles on climate over the Indian subcontinent over the last century. As the world transitions toward decarbonization in the next few decades, emissions pathways could have major impacts on India's climate and people. Pathways for future emissions are highly uncertain, particularly at present as countries recover from COVID-19. This paper explores a multimodel ensemble of Earth system models leveraging potential global emissions pathways following COVID-19 and the consequences for India's summertime (June-July-August-September) climate in the near- and long-term. We investigate specifically scenarios which envisage a fossil-based recovery, a strong renewable-based recovery and a moderate scenario in between the two. We find that near-term climate changes are dominated by natural climate variability, and thus likely independent of the emissions pathway. By 2050, pathway-induced spatial patterns in the seasonally-aggregated precipitation become clearer with a drying in the fossil-based scenario and wetting in the strong renewable scenario. Additionally, extreme temperature and precipitation events in India are expected to increase in magnitude and frequency regardless of the emissions scenario, though the spatial patterns of these changes as well as the extent of the change are pathway dependent. This study provides an important discussion on the impacts of emissions recover pathways following COVID-19 on India, a nation which is likely to be particularly susceptible to climate change over the coming decades.
Jing Cao, Mun S. Ho, Rong Ma, and Fei Teng. 2021. “When carbon emission trading meets a regulated industry: Evidence from the electricity sector of China.” Journal for Public Economics, 200, August, Pp. 104470. Publisher's VersionAbstract
This paper provides retrospective firm-level evidence on the effectiveness of China’s carbon market pilots in reducing emissions in the electricity sector. We show that the carbon emission trading system (ETS) has no effect on changing coal efficiency of regulated coal- fired power plants. Although we find a significant reduction in coal consumption associated with ETS participation, this reduction was achieved by reducing electricity production. The output contraction in the treated plants is not due to their optimizing behavior but is likely driven by government decisions, because the impacts of emission permits on marginal costs are small relative to the controlled electricity prices and the reduction is associated with financial losses. In addition, we find no evidence of carbon leakage to other provinces, but a significant increase in the production of non-coal-fired power plants in the ETS regions. 
Yu Fu, Haiyang Lin, Cuiping Ma, Bo Sun, Hailong Li, Qie Sun, and Ronald Wennersten. 2021. “Effects of uncertainties on the capacity and operation of an integrated energy system.” Sustainable Energy Technologies and Assessments, 48, December, Pp. 101625. Publisher's VersionAbstract

Uncertainty is a common and critical problem for planning the capacity and operation of integrated energy systems (IESs). This study evaluates the effects of uncertainties on the capacity and operation of an IES. To this aim, system planning and operation with uncertainties are optimized by a two-stage stochastic programming model and compared with a referencing deterministic case. Specifically, the uncertainties of photovoltaic (PV) generation and energy demand are investigated.

Regarding system capacity, a larger energy storage capacity is needed to accommodate a higher uncertainty. The superimposed uncertainties have a higher effect on system capacity than the sum of the effect of each uncertainty. The uncertainty of energy demand has a higher impact than the uncertainty of PV generation.

Regarding system operation, the increase in operation cost is smaller than the increase in investment cost and total cost. In addition, the average flexibility provided by the energy storage increases with uncertainty and uncertainties affect the change rate for power charging/discharging of the electric energy storage. Regarding the effect on the grid, the uncertainties increase not only the magnitude of ramping-rate, but also the frequency of power-dispatch.

Yan Zhang, Yu Zhao, Meng Gao, Xin Bo, and Chris P. Nielsen. 2021. “Air quality and health benefits from ultra-low emission control policy indicated by continuous emission monitoring: a case study in the Yangtze River Delta region, China.” Atmospheric Chemistry and Physics, 21, Pp. 6411–6430. Publisher's VersionAbstract
To evaluate the improved emission estimates from online monitoring, we applied the Models-3/CMAQ (Community Multiscale Air Quality) system to simulate the air quality of the Yangtze River Delta (YRD) region using two emission inventories with and without incorporated data from continuous emission monitoring systems (CEMSs) at coal-fired power plants (cases 1 and 2, respectively). The normalized mean biases (NMBs) between the observed and simulated hourly concentrations of SO2, NO2, O3, and PM2.5 in case 2 were −3.1 %, 56.3 %, −19.5 %, and −1.4 %, all smaller in absolute value than those in case 1 at 8.2 %, 68.9 %, −24.6 %, and 7.6 %, respectively. The results indicate that incorporation of CEMS data in the emission inventory reduced the biases between simulation and observation and could better reflect the actual sources of regional air pollution. Based on the CEMS data, the air quality changes and corresponding health impacts were quantified for different implementation levels of China's recent “ultra-low” emission policy. If the coal-fired power sector met the requirement alone (case 3), the differences in the simulated monthly SO2, NO2, O3, and PM2.5 concentrations compared to those of case 2, our base case for policy comparisons, would be less than 7 % for all pollutants. The result implies a minor benefit of ultra-low emission control if implemented in the power sector alone, which is attributed to its limited contribution to the total emissions in the YRD after years of pollution control (11 %, 7 %, and 2 % of SO2, NOX, and primary particle matter (PM) in case 2, respectively). If the ultra-low emission policy was enacted at both power plants and selected industrial sources including boilers, cement, and iron and steel factories (case 4), the simulated SO2, NO2, and PM2.5concentrations compared to the base case would be 33 %–64 %, 16 %–23 %, and 6 %–22 % lower, respectively, depending on the month (January, April, July, and October 2015). Combining CMAQ and the Integrated Exposure Response (IER) model, we further estimated that 305 deaths and 8744 years of life loss (YLL) attributable to PM2.5 exposure could be avoided with the implementation of the ultra-low emission policy in the power sector in the YRD region. The analogous values would be much higher, at 10 651 deaths and 316 562 YLL avoided, if both power and industrial sectors met the ultra-low emission limits. In order to improve regional air quality and to reduce human health risk effectively, coordinated control of multiple sources should be implemented, and the ultra-low emission policy should be substantially expanded to major emission sources in industries other than the power industry.
Yingying Lyu and Ann Forsyth. 2021. “Attitudes, perceptions, and walking behavior in a Chinese city.” Journal of Transport & Health, 21, June, Pp. 101047. Publisher's VersionAbstract


An increasing number of walking studies discussed the relationship of walking with attitudes and perceptions. However, the findings were not consistent, and few studies examined the relationship between walking and attitudes to overall mobility and multiple modes. In this paper, we contribute to the debates by exploring the relationship between walking for transport and broad attitudes to urban mobility and transport modes.


Using a clustered random sample survey conducted in a second-tier city in China (N=1,048), we hypothesized that people with different attitudes have different amounts of walking for transport. Data analysis methods involved descriptive statistics, t-tests, Analysis of Variance (ANOVA), hierarchical logistic models, and hierarchical linear models.


Positive attitudes and perceptions regarding multiple transport modes and related environments were associated with some walking for transport. T-tests indicated that those with different attitudes walked different amounts. Regression models showed that associations between attitudes and odds of people walking varied between genders. Males who perceived bus frequency was not a problem were more likely to walk. Females tended to walk when viewing transportation in the city as convenient. Both findings contribute to the understanding that positive perceptions of overall mobility in the city were associated with higher odds of walking. Meanwhile, among those who did walk, those with positive attitudes towards pedestrian safety crossing streets and those perceiving traffic jams as a problem in their daily trips spent more time walking.


This paper concludes that positive broad attitudes and perceptions of overall mobility and all transport modes are related to more walking activities. A better understanding of such relationships can provide a reference point for urban policies aiming at promoting walking for transport.

Chenghe Guan and Peter G. Rowe. 2021. “Beyond big versus small: assessing spatial variation of urban neighborhood block structures in high-density cities.” Socio-Ecological Practice Research, 321, Pp. 37–53. Publisher's VersionAbstract
A striking feature of urban formation has been the deployment of mega-blocks, often on the order of sixteen hectares or more. On the other hand, recent urban policies give strong suggestions for smaller and finer-grained neighborhood block and grid arrangements. This paper explores the transformation of urban block structures in high-density cities beyond spatial conditions of big versus small blocks by emphasizing “place” making through the degree of spatial diversity and flexibility. Using spatial indices of urban block arrangements, road network efficiencies and gradients of transit network accessibility, the assessment on urban neighborhood block structure is applied to territories of central core, suburban and peripheral development in Beijing, Shanghai and Shenzhen at multiple spatial scales. The results show that the overall efficiency and flexibility of urban block structures becomes more a matter of a narrowing of the range of differing block sizes among the three territories and a concomitant higher potential capacity for adaptation to a broader range of development options. Beyond the Chinese context, in high-density cities across the globe, policies on place making should adopt a multi-scale spatial analysis strategy to measure the configuration of the overall urban block structure and guide the transformation of the city.
Yingying Lyu, Ann Forsyth, and Steven Worthington. 2021. “Built environment and self-rated health: comparing young, middle-aged, and older people in Chengdu, China.” Health Environments Research & Design Journal, 144, 3, Pp. 229-246. Publisher's VersionAbstract

Objectives: This paper explores how the building-scale built environment is associated with self-rated health, examining differences in this association among younger, middle-aged, and older age groups. Features examined included building type, building condition, and sidewalk presence in front of dwellings.
Background: Understanding how the relationships between built environments and health vary across age groups helps to build a healthy environment for all. However, most studies have concentrated on the neighborhood or indoor environment, rather than whole buildings, and few have compared age groups.
Methods: This study analyzed survey data from 1,019 adults living in 40 neighborhoods in Chengdu, China, recruited through a clustered random sampling approach. It used a Bayesian logistic mixed effects model with interaction terms between age group indicators and other variables.
Results: Significant differences exist in the relationships of self-rated health with some environmental and other indicators among age groups. For older people, living in multi-floor buildings, having a household smoker, and undertaking fewer hours of weekly exercise were associated with lower odds of reporting good, very good, or excellent health. These relationships were not identified among middle-aged and younger people. More education was associated with higher odds of reporting better health among older and middle-aged groups.
Conclusions: Older people experience more health-related challenges compared to middle-aged and younger people. However, among the examined built environmental factors, building type was the only significant factor related to self-rated health among older people. To promote health among older people, this study recommends adding elevators in the multi-floor buildings.


Jinzhao Yang, Yu Zhao, Jing Cao, and Chris P. Nielsen. 2021. “Co-benefits of carbon and pollution control policies on air quality and health till 2030 in China.” Environment International, 152, July, Pp. 106482. Publisher's VersionAbstract
Facing the dual challenges of climate change and air pollution, China has made great efforts to explore the co-control strategies for the both. We assessed the benefits of carbon and pollution control policies on air quality and human health, with an integrated framework combining an energy-economic model, an air quality model and a concentration–response model. With a base year 2015, seven combined scenarios were developed for 2030 based on three energy scenarios and three end-of-pipe control ones. Policy-specific benefits were then evaluated, indicated by the reduced emissions, surface concentrations of major pollutants, and premature deaths between scenarios. Compared to the 2030 baseline scenario, the nationwide PM2.5- and O3-related mortality was expected to decline 23% or 289 (95% confidence interval: 220–360) thousand in the most stringent scenario, and three quarters of the avoided deaths were attributed to the end-of-pipe control measures. Provinces in heavily polluted and densely populated regions would benefit more from carbon and pollution control strategies. The population fractions with PM2.5 exposure under the national air quality standard (35 μg/m3) and WHO guideline (10 μg/m3) would be doubled from 2015 to 2030 (the most stringent scenario), while still very few people would live in areas with the WHO guideline achieved for O3 (100 μg/m3). Increased health impact of O3 suggested a great significance of joint control of PM2.5 and O3 in future policy-making.
Faan Chen, Jiaorong Wu, Xiaohong Chen, and Chris Nielsen. 2021. “Disentangling the impacts of the built environment and self-selection on travel behavior: An empirical study in the context of different housing types.” Cities, 116, September, Pp. 103285. Publisher's VersionAbstract
Due to spatial heterogeneity worldwide, results from studies examining the effect of residential self-selection on travel behavior vary substantially. As a result of housing reform, the unique housing allocation system in China is a prime example of a context where the self-selection effect may conflict with international knowledge. Using a sample of 3836 residents, whom are living in Transit-Oriented Development (TOD) and non-TOD neighborhoods in Shanghai, this study untangles the effects that the built environment and residential self-selection have on travel behavior, in the context of diversified housing types in urban China. Specifically, this paper employs propensity score matching (PSM) to quantitate the relative importance of the built environment itself, verses residential self-selection, in influencing travel behavior for each of the housing types. The results show that the residential self-selection effect in the four types of housing (work-unit, commodity, public, and replacement) accounts for 15.2%, 30.7%, 18.5%, and 5.9% of the total impact on vehicle kilometers traveled (VKT), respectively. These findings expand the international database of point estimates in the relative contribution of self-selection toward the impact on travel behavior across global contexts, providing a comprehensive framework for similar studies on self-selection in other parts of the world.
Haiyang Lin, Qiuwei Wu, Xinyu Chen, Xi Yang, Xinyang Guo, Jiajun Lv, Tianguang Lu, Shaojie Song, and Michael B. McElroy. 2021. “Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China.” Renewable Energy, 173, Pp. 569-580. Publisher's VersionAbstract
Hydrogen can play a key role in facilitating the transition to a future deeply decarbonized energy system and can help accommodate higher penetrations of renewables in the power system. Arguments to justify this conclusion are supported by an analysis based on real-world data from China’s Western Inner Mongolia (WIM). The economic feasibility and decarbonization potential of renewable-based hydrogen production are discussed through an integrated power-hydrogen-emission analytical framework. The framework combines a high-resolution wind resource analysis with hourly simulation for the operation of power systems and hydrogen production considering technical and economic specifications on selection of three different types of electrolyzers and two operating modes. The results indicate that using wind power to produce hydrogen could provide a cost-competitive alternative (<2 $kg-1) to WIM’s current coal-dominated hydrogen manufacturing system, contributing at the same time to important reductions in wind curtailment and CO2 emissions. The levelized cost for hydrogen production is projected to decrease in the coming decade consistent with increases in wind power capacity and decreases in capital costs for electrolyzers. Lessons learned from the study can be applied to other regions and countries to explore possibilities for larger scale economically justified and carbon saving hydrogen production with renewables.