Wang, Yuxuan

Submitted
Archana Dayalu, J. William Munger, Yuxuan Wang, Steven C. Wofsy, Yu Zhao, Thomas Nehrkorn, Chris P. Nielsen, Michael B. McElroy, and Rachel Y.-W. Chang. Submitted. “Carbon dioxide emissions in northern China based on atmospheric observations from 2005 to 2009.” Atmospheric Chemistry and Physics. Available in ACPD
S.J. Song, M. Gao, W.Q. Xu, Y.L. Sun, D.R. Worsnop, J.T. Jayne, Y.Z. Zhang, L. Zhu, M. Li, Z. Zhou, C.L. Cheng, Y.B. Lv, Y. Wang, W. Peng, X.B. Xu, N. Lin, Y.X. Wang, S.X. Wang, J. W. Munger, D. Jacob, and M.B. McElroy. Submitted. “Hydroxymethanesulfonate in northern China winter haze aerosols and implications for rapid sulfate production.” Atmospheric Chemistry and Physics.
Archana Dayalu, William Munger, Steven Wofsy, Yuxuan Wang, Thomas Nehrkorn, Yu Zhao, Michael McElroy, Chris Nielsen, and Kristina Luus. Submitted. “VPRM-CHINA: Using the Vegetation, Photosynthesis, and Respiration Model to partition contributions to CO2 measurements in Northern China during the 2005-2009 growing seasons.” Biogeosciences. Publisher's Version
2018
Shaojie Song, Meng Gao, Weiqi Xu, Jingyuan Shao, Guoliang Shi, Shuxiao Wang, Yuxuan Wang, Yele Sun, and Michael McElroy. 2018. “Fine particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models.” Atmospheric Chemistry and Physics, 18, Pp. 7423-7438. Publisher's VersionAbstract
pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in North China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA) and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic) to as high as 7 (neutral). In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol phase composition as inputs (i.e., reverse mode) are sensitive to the measurement errors of ionic species and inferred pH values exhibit a bimodal distribution with peaks between −2 and 2 and between 7 and 10. Calculations using total (gas plus aerosol phase) measurements as inputs (i.e., forward mode) are affected much less by the measurement errors, and results are thus superior to those obtained from the reverse mode calculations. Forward mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5) for fine particles in North China winter haze, indicating further that ammonia plays an important role in determining this property. The differences in pH predicted by the forward mode E-AIM and ISORROPIA calculations may be attributed mainly to differences in estimates of activity coefficients for hydrogen ions. The phase state assumed, which can be either stable (solid plus liquid) or metastable (only liquid), does not significantly impact pH predictions of ISORROPIA.
2014
Long Wang, Shuxiao Wang, Lei Zheng, Yuxuan Wang, Yanxu Zheng, Chris P Nielsen, Michael B. McElroy, and Jiming Hao. 2014. “Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model.” Environmental Pollution, 190, July, Pp. 166-175. Publisher's VersionAbstract

China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. In this study, China's Hg emission inventory is updated to 2007 and applied in the GEOS-Chem model to simulate the Hg concentrations and depositions in China. Results indicate that simulations agree well with observed background Hg concentrations. The anthropogenic sources contributed 35–50% of THg concentration and 50–70% of total deposition in polluted regions. Sensitivity analysis was performed to assess the impacts of mercury emissions from power plants, non-ferrous metal smelters and cement plants. It is found that power plants are the most important emission sources in the North China, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) while the contribution of non-ferrous metal smelters is most significant in the Southwest China. The impacts of cement plants are significant in the YRD, PRD and Central China.

2013
Yuxuan Wang. 2013. “Atmospheric Modeling of Pollutant Concentrations.” In Clearer Skies Over China: Reconciling Air Quality, Climate, and Economic Goals, Pp. 263-289. Cambridge, MA: MIT Press. Publisher's Version
Chris P Nielsen, Mun S Ho, Jing Cao, Yu Lei, Yuxuan Wang, and Yu Zhao. 2013. “Summary: Carbon Taxes for 2013-2020.” In Clearer Skies Over China: Reconciling Air Quality, Climate, and Economic Goals, Pp. 103-157. Cambridge, MA: MIT Press. Publisher's Version
Chris P Nielsen, Mun S Ho, Yu Zhao, Yuxuan Wang, Yu Lei, and Jing Cao. 2013. “Summary: Sulfur Mandates and Carbon Taxes for 2006-2010.” In Clearer Skies Over China: Reconciling Air Quality, Climate, and Economic Goals, Pp. 59-102. Cambridge, MA: MIT Press. Publisher's Version
Xuan Wang, Yuxuan Wang, Jiming Hao, Yutaka Kondo, Martin Irwin, J. William Munger, and Yongjing Zhao. 2013. “Top-down estimate of China's black carbon emissions using surface observations: Sensitivity to observation representativeness and transport model error.” Journal of Geophysical Research, 118, 11, Pp. 5781-5795. Publisher's VersionAbstract

This study examines the sensitivity of “top-down” quantification of Chinese black carbon (BC) emissions to the temporal resolution of surface observations and to the transport model error associated with the grid resolution and wet deposition. At two rural sites (Miyun in North China Plain and Chongming in Yangtze River Delta), the model-inferred emission bias based on hourly BC observations can differ by up to 41% from that based on monthly mean observations. This difference relates to the intrinsic inability of the grid-based model in simulating high pollution plumes, which often exert a larger influence on the arithmetic mean of observations at monthly time steps. Adopting the variation of BC to carbon monoxide correlation slope with precipitation as a suitable measure to evaluate the model's wet deposition, we found that wet removal of BC in the model was too weak, due in part to the model's underestimation of large precipitation events. After filtering out the observations during high pollution plumes and large precipitation events for which the transport model error should not be translated into the emission error, the inferred emission bias changed from −11% (without filtering) to −2% (with filtering) at the Miyun site, and from −22% to +1% at the Chongming site. Using surface BC observations from three more rural sites (located in Northeast, Central, and Central South China, respectively) as constraints, our top-down estimate of total BC emissions over China was 1.80 ± 0.65 Tg/yr in 2006, 0.5% lower than the bottom-up inventory of Zhang et al. (2009) but with smaller uncertainty.

2011
Yuxuan Wang, Xuan Wang, Yutaka Kondo, Mizuo Kajino, J. William Munger, and Jiming Hao. 2011. “Black carbon and its correlation with trace gases at a rural site in Beijing: implications for regional emissions.” Journal of Geophysical Research, 116, D24. Publisher's Version
2010
Yuxuan Wang, J. William Munger, Shicheng Xu, Michael B. McElroy, Jiming Hao, Chris P Nielsen, and Hong Ma. 2010. “CO2 and its correlation with CO at a rural site near Beijing: Implications for combustion efficiency in China.” Atmospheric Chemistry and Physics, 10, Pp. 8881-8897. Publisher's Version
Yuxuan Wang, Michael B. McElroy, J. William Munger, Jiming Hao, Hong Ma, and Chris P Nielsen. 2010. “Year-round measurements of O3 and CO at a rural site near Beijing: Variations in their correlations.” Tellus B: Chemical and Physical Meteorology, 62, 4, Pp. 228-241. Publisher's Version
2009
Yuxuan Wang, Jiming Hao, Michael B. McElroy, J. William Munger, Hong Ma, Dan Chen, and Chris P Nielsen. 2009. “Ozone air quality during the 2008 Beijing Olympics: Effectiveness of emission restrictions.” Atmospheric Chemistry and Physics, 9, 14, Pp. 5237-5251. Publisher's Version
Michael B. McElroy, Xi Lu, Chris P Nielsen, and Yuxuan Wang. 2009. “Potential for wind generated electricity in China.” Science, 325, 5946, Pp. 1378-1380. Publisher's Version

This paper was the cover article of this issue of Science; click here (http://www.sciencemag.org/content/325/5946.cover-expansion) to see the cover image of wind turbines near the Great Wall of China.

Dan Chen, Yuxuan Wang, Michael B. McElroy, Kebin He, Robert M Yantosca, and Phillipe Le Sager. 2009. “Regional CO pollution in China simulated by the high-resolution nested-grid GEOS-Chem model.” Atmospheric Chemistry and Physics, 9, 11, Pp. 3825-3839. Publisher's Version
2008
Yuxuan Wang, Michael B. McElroy, J. William Munger, Jiming Hao, Hong Ma, Chris P Nielsen, and Yaosheng Chen. 2008. “Variations of O3 and CO in summertime at a rural site near Beijing.” Atmospheric Chemistry and Physics, 8, 21, Pp. 6355-6363. Publisher's Version
2007
Yuxuan Wang, Michael B. McElroy, Randall V Martin, David G Streets, Qiang Zhang, and Tung-May Fu. 2007. “Seasonal variability of NOx emissions over east China constrained by satellite observations: Implications for combustion and microbial sources.” Journal of Geophysical Research, 112, D06301. Publisher's Version
Yuxuan Wang, Michael B. McElroy, K. Folkert Boersma, Henk J Eskes, and Pepijn J Veefkind. 2007. “Traffic restrictions associated with the Sino-African Summit: Reductions of NOX detected from space.” Geophysical Research Letters, 34, L08814. Publisher's Version
2005
Michael B. McElroy and Yuxuan Wang. 2005. “Human and animal wastes: Implications for atmospheric N2O and NOX.” Global Biogeochemical Cycles, 19, 2. Publisher's Version
2004
Y.X. Wang, M.B. McElroy, T. Wang, and P.I. Palmer. 2004. “Asian emissions of CO and NOX: Constraints from aircraft and Chinese station data.” Journal of Geophysical Research, 109, D24304. Publisher's Version

Pages