Wang, Yuxuan

2020
Archana Dayalu, J. William Munger, Yuxuan Wang, Steven C. Wofsy, Yu Zhao, Thomas Nehrkorn, Chris P. Nielsen, Michael B. McElroy, and Rachel Chang. 2020. “Evaluating China's anthropogenic CO2 emissions inventories: a northern China case study using continuous surface observations from 2005 to 2009.” Atmospheric Chemistry and Physics, 20, 6, Pp. 3569–3588. Publisher's VersionAbstract
China has pledged reduction of carbon dioxide (CO2) emissions per unit of gross domestic product (GDP) by 60 %–65 % relative to 2005 levels, and to peak carbon emissions overall by 2030. However, the lack of observational data and disagreement among the many available inventories makes it difficult for China to track progress toward these goals and evaluate the efficacy of control measures. To demonstrate the value of atmospheric observations for constraining CO2 inventories we track the ability of CO2 concentrations predicted from three different CO2 inventories to match a unique multi-year continuous record of atmospheric CO2. Our analysis time window includes the key commitment period for the Paris Agreement (2005) and the Beijing Olympics (2008). One inventory is China-specific and two are spatial subsets of global inventories. The inventories differ in spatial resolution, basis in national or subnational statistics, and reliance on global or China-specific emission factors. We use a unique set of historical atmospheric observations from 2005 to 2009 to evaluate the three CO2 emissions inventories within China's heavily industrialized and populated northern region accounting for ∼33 %–41 % of national emissions. Each anthropogenic inventory is combined with estimates of biogenic CO2 within a high-resolution atmospheric transport framework to model the time series of CO2 observations. To convert the model–observation mismatch from mixing ratio to mass emission rates we distribute it over a region encompassing 90 % of the total surface influence in seasonal (annual) averaged back-trajectory footprints (L_0.90 region). The L_0.90 region roughly corresponds to northern China. Except for the peak growing season, where assessment of anthropogenic emissions is entangled with the strong vegetation signal, we find the China-specific inventory based on subnational data and domestic field studies agrees significantly better with observations than the global inventories at all timescales. Averaged over the study time period, the unscaled China-specific inventory reports substantially larger annual emissions for northern China (30 %) and China as a whole (20 %) than the two unscaled global inventories. Our results, exploiting a robust time series of continuous observations, lend support to the rates and geographic distribution in the China-specific inventory Though even long-term observations at a single site reveal differences among inventories, exploring inventory discrepancy over all of China requires a denser observational network in future efforts to measure and verify CO2 emissions for China both regionally and nationally. We find that carbon intensity in the northern China region has decreased by 47 % from 2005 to 2009, from approximately 4 kg of CO2 per USD (note that all references to USD in this paper refer to USD adjusted for purchasing power parity, PPP) in 2005 to about 2 kg of CO2 per USD in 2009 (Fig. 9c). However, the corresponding 18 % increase in absolute emissions over the same time period affirms a critical point that carbon intensity targets in emerging economies can be at odds with making real climate progress. Our results provide an important quantification of model–observation mismatch, supporting the increased use and development of China-specific inventories in tracking China's progress as a whole towards reducing emissions. We emphasize that this work presents a methodology for extending the analysis to other inventories and is intended to be a comparison of a subset of anthropogenic CO2 emissions rates from inventories that were readily available at the time this research began. For this study's analysis time period, there was not enough spatially distinct observational data to conduct an optimization of the inventories. The primary intent of the comparisons presented here is not to judge specific inventories, but to demonstrate that even a single site with a long record of high-time-resolution observations can identify major differences among inventories that manifest as biases in the model–data comparison. This study provides a baseline analysis for evaluating emissions from a small but important region within China, as well a guide for determining optimal locations for future ground-based measurement sites.
ACP_Full_Text
2019
S.J. Song, M. Gao, W.Q. Xu, Y.L. Sun, D.R. Worsnop, J.T. Jayne, Y.Z. Zhang, L. Zhu, M. Li, Z. Zhou, C.L. Cheng, Y.B. Lv, Y. Wang, W. Peng, X.B. Xu, N. Lin, Y.X. Wang, S.X. Wang, J. W. Munger, D. Jacob, and M.B. McElroy. 2019. “Possible heterogeneous hydroxymethanesulfonate (HMS) chemistry in northern China winter haze and implications for rapid sulfate formation.” Atmospheric Chemistry and Physics, 19, Pp. 1357-1371. Publisher's VersionAbstract
The chemical mechanisms responsible for rapid sulfate production, an important driver of winter haze formation in northern China, remain unclear. Here, we propose a potentially important heterogeneous hydroxymethanesulfonate (HMS) chemical mechanism. Through analyzing field measurements with aerosol mass spectrometry, we show evidence for a possible significant existence in haze aerosols of organosulfur primarily as HMS, misidentified as sulfate in previous observations. We estimate that HMS can account for up to about one-third of the sulfate concentrations unexplained by current air quality models. Heterogeneous production of HMS by SO2 and formaldehyde is favored under northern China winter haze conditions due to high aerosol water content, moderately acidic pH values, high gaseous precursor levels, and low temperature. These analyses identify an unappreciated importance of formaldehyde in secondary aerosol formation and call for more research on sources and on the chemistry of formaldehyde in northern China winter.
ACP paper
2018
Archana Dayalu, William Munger, Steven Wofsy, Yuxuan Wang, Thomas Nehrkorn, Yu Zhao, Michael McElroy, Chris Nielsen, and Kristina Luus. 2018. “Assessing biotic contributions to CO2 fluxes in northern China using the Vegetation, Photosynthesis and Respiration Model (VPRM-CHINA) and observations from 2005 to 2009.” Biogeosciences, 15, Pp. 6713-6729. Publisher's VersionAbstract
Accurately quantifying the spatiotemporal distribution of the biological component of CO2 surface–atmosphere exchange is necessary to improve top-down constraints on China's anthropogenic CO2 emissions. We provide hourly fluxes of CO2 as net ecosystem exchange (NEE; µmol CO2 m−2 s−1) on a 0.25∘×0.25∘" id="MathJax-Element-1-Frame" role="presentation" style="position: relative;" tabindex="0">0.25×0.25 grid by adapting the Vegetation, Photosynthesis, and Respiration Model (VPRM) to the eastern half of China for the time period from 2005 to 2009; the minimal empirical parameterization of the VPRM-CHINA makes it well suited for inverse modeling approaches. This study diverges from previous VPRM applications in that it is applied at a large scale to China's ecosystems for the first time, incorporating a novel processing framework not previously applied to existing VPRM versions. In addition, the VPRM-CHINA model prescribes methods for addressing dual-cropping regions that have two separate growing-season modes applied to the same model grid cell. We evaluate the VPRM-CHINA performance during the growing season and compare to other biospheric models. We calibrate the VPRM-CHINA with ChinaFlux and FluxNet data and scale up regionally using Weather Research and Forecasting (WRF) Model v3.6.1 meteorology and MODIS surface reflectances. When combined with an anthropogenic emissions model in a Lagrangian particle transport framework, we compare the ability of VPRM-CHINA relative to an ensemble mean of global hourly flux models (NASA CMS – Carbon Monitoring System) to reproduce observations made at a site in northern China. The measurements are heavily influenced by the northern China administrative region. Modeled hourly time series using vegetation fluxes prescribed by VPRM-CHINA exhibit low bias relative to measurements during the May–September growing season. Compared to NASA CMS subset over the study region, VPRM-CHINA agrees significantly better with measurements. NASA CMS consistently underestimates regional uptake in the growing season. We find that during the peak growing season, when the heavily cropped North China Plain significantly influences measurements, VPRM-CHINA models a CO2 uptake signal comparable in magnitude to the modeled anthropogenic signal. In addition to demonstrating efficacy as a low-bias prior for top-down CO2 inventory optimization studies using ground-based measurements, high spatiotemporal resolution models such as the VPRM are critical for interpreting retrievals from global CO2 remote-sensing platforms such as OCO-2 and OCO-3 (planned). Depending on the satellite time of day and season of crossover, efforts to interpret the relative contribution of the vegetation and anthropogenic components to the measured signal are critical in key emitting regions such as northern China – where the magnitude of the vegetation CO2 signal is shown to be equivalent to the anthropogenic signal.
BG paper.pdf
Shaojie Song, Meng Gao, Weiqi Xu, Jingyuan Shao, Guoliang Shi, Shuxiao Wang, Yuxuan Wang, Yele Sun, and Michael McElroy. 2018. “Fine particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models.” Atmospheric Chemistry and Physics, 18, Pp. 7423-7438. Publisher's VersionAbstract
pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in North China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA) and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic) to as high as 7 (neutral). In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol phase composition as inputs (i.e., reverse mode) are sensitive to the measurement errors of ionic species and inferred pH values exhibit a bimodal distribution with peaks between −2 and 2 and between 7 and 10. Calculations using total (gas plus aerosol phase) measurements as inputs (i.e., forward mode) are affected much less by the measurement errors, and results are thus superior to those obtained from the reverse mode calculations. Forward mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5) for fine particles in North China winter haze, indicating further that ammonia plays an important role in determining this property. The differences in pH predicted by the forward mode E-AIM and ISORROPIA calculations may be attributed mainly to differences in estimates of activity coefficients for hydrogen ions. The phase state assumed, which can be either stable (solid plus liquid) or metastable (only liquid), does not significantly impact pH predictions of ISORROPIA.
ACP paper.pdf
2014
Long Wang, Shuxiao Wang, Lei Zheng, Yuxuan Wang, Yanxu Zheng, Chris P Nielsen, Michael B. McElroy, and Jiming Hao. 2014. “Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model.” Environmental Pollution, 190, July, Pp. 166-175. Publisher's VersionAbstract

China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. In this study, China's Hg emission inventory is updated to 2007 and applied in the GEOS-Chem model to simulate the Hg concentrations and depositions in China. Results indicate that simulations agree well with observed background Hg concentrations. The anthropogenic sources contributed 35–50% of THg concentration and 50–70% of total deposition in polluted regions. Sensitivity analysis was performed to assess the impacts of mercury emissions from power plants, non-ferrous metal smelters and cement plants. It is found that power plants are the most important emission sources in the North China, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) while the contribution of non-ferrous metal smelters is most significant in the Southwest China. The impacts of cement plants are significant in the YRD, PRD and Central China.

2013
Yuxuan Wang. 2013. “Atmospheric Modeling of Pollutant Concentrations.” In Clearer Skies Over China: Reconciling Air Quality, Climate, and Economic Goals, Pp. 263-289. Cambridge, MA: MIT Press. Publisher's VersionAbstract

A groundbreaking U.S.–Chinese inquiry into the effects of recent air pollution controls and prospective carbon taxes on China's economy and environment.

China's carbon dioxide emissions now outstrip those of other countries and its domestic air quality is severely degraded, especially in urban areas. Its sheer size and its growing, fossil-fuel-powered economy mean that China's economic and environmental policy choices will have an outsized effect on the global environmental future. Over the last decade, China has pursued policies that target both fossil fuel use and atmospheric emissions, but these efforts have been substantially overwhelmed by the country's increasing energy demands. With a billion citizens still living on less than $4,000 per year, China's energy and environmental policies must be reconciled with the goals of maintaining economic growth and raising living standards.

This book, a U.S.–Chinese collaboration of experts from Harvard and Tsinghua University, offers a groundbreaking integrated analysis of China's economy, emissions, air quality, public health, and agriculture. It first offers essential scientific context and accessible summaries of the book's policy findings; it then provides the underlying scientific and economic research. These studies suggest that China's recent sulfur controls achieved enormous environmental health benefits at unexpectedly low costs. They also indicate that judicious implementation of carbon taxes could reduce not only China's carbon emissions but also its air pollution more comprehensively than current single-pollutant policies, all at little cost to economic growth.

Chris P Nielsen, Mun S Ho, Jing Cao, Yu Lei, Yuxuan Wang, and Yu Zhao. 2013. “Summary: Carbon Taxes for 2013-2020.” In Clearer Skies Over China: Reconciling Air Quality, Climate, and Economic Goals, Pp. 103-157. Cambridge, MA: MIT Press. Publisher's VersionAbstract

A groundbreaking U.S.–Chinese inquiry into the effects of recent air pollution controls and prospective carbon taxes on China's economy and environment.

China's carbon dioxide emissions now outstrip those of other countries and its domestic air quality is severely degraded, especially in urban areas. Its sheer size and its growing, fossil-fuel-powered economy mean that China's economic and environmental policy choices will have an outsized effect on the global environmental future. Over the last decade, China has pursued policies that target both fossil fuel use and atmospheric emissions, but these efforts have been substantially overwhelmed by the country's increasing energy demands. With a billion citizens still living on less than $4,000 per year, China's energy and environmental policies must be reconciled with the goals of maintaining economic growth and raising living standards.

This book, a U.S.–Chinese collaboration of experts from Harvard and Tsinghua University, offers a groundbreaking integrated analysis of China's economy, emissions, air quality, public health, and agriculture. It first offers essential scientific context and accessible summaries of the book's policy findings; it then provides the underlying scientific and economic research. These studies suggest that China's recent sulfur controls achieved enormous environmental health benefits at unexpectedly low costs. They also indicate that judicious implementation of carbon taxes could reduce not only China's carbon emissions but also its air pollution more comprehensively than current single-pollutant policies, all at little cost to economic growth.

Chris P Nielsen, Mun S Ho, Yu Zhao, Yuxuan Wang, Yu Lei, and Jing Cao. 2013. “Summary: Sulfur Mandates and Carbon Taxes for 2006-2010.” In Clearer Skies Over China: Reconciling Air Quality, Climate, and Economic Goals, Pp. 59-102. Cambridge, MA: MIT Press. Publisher's VersionAbstract

A groundbreaking U.S.–Chinese inquiry into the effects of recent air pollution controls and prospective carbon taxes on China's economy and environment.

China's carbon dioxide emissions now outstrip those of other countries and its domestic air quality is severely degraded, especially in urban areas. Its sheer size and its growing, fossil-fuel-powered economy mean that China's economic and environmental policy choices will have an outsized effect on the global environmental future. Over the last decade, China has pursued policies that target both fossil fuel use and atmospheric emissions, but these efforts have been substantially overwhelmed by the country's increasing energy demands. With a billion citizens still living on less than $4,000 per year, China's energy and environmental policies must be reconciled with the goals of maintaining economic growth and raising living standards.

This book, a U.S.–Chinese collaboration of experts from Harvard and Tsinghua University, offers a groundbreaking integrated analysis of China's economy, emissions, air quality, public health, and agriculture. It first offers essential scientific context and accessible summaries of the book's policy findings; it then provides the underlying scientific and economic research. These studies suggest that China's recent sulfur controls achieved enormous environmental health benefits at unexpectedly low costs. They also indicate that judicious implementation of carbon taxes could reduce not only China's carbon emissions but also its air pollution more comprehensively than current single-pollutant policies, all at little cost to economic growth.

Xuan Wang, Yuxuan Wang, Jiming Hao, Yutaka Kondo, Martin Irwin, J. William Munger, and Yongjing Zhao. 2013. “Top-down estimate of China's black carbon emissions using surface observations: Sensitivity to observation representativeness and transport model error.” Journal of Geophysical Research, 118, 11, Pp. 5781-5795. Publisher's VersionAbstract

This study examines the sensitivity of “top-down” quantification of Chinese black carbon (BC) emissions to the temporal resolution of surface observations and to the transport model error associated with the grid resolution and wet deposition. At two rural sites (Miyun in North China Plain and Chongming in Yangtze River Delta), the model-inferred emission bias based on hourly BC observations can differ by up to 41% from that based on monthly mean observations. This difference relates to the intrinsic inability of the grid-based model in simulating high pollution plumes, which often exert a larger influence on the arithmetic mean of observations at monthly time steps. Adopting the variation of BC to carbon monoxide correlation slope with precipitation as a suitable measure to evaluate the model's wet deposition, we found that wet removal of BC in the model was too weak, due in part to the model's underestimation of large precipitation events. After filtering out the observations during high pollution plumes and large precipitation events for which the transport model error should not be translated into the emission error, the inferred emission bias changed from −11% (without filtering) to −2% (with filtering) at the Miyun site, and from −22% to +1% at the Chongming site. Using surface BC observations from three more rural sites (located in Northeast, Central, and Central South China, respectively) as constraints, our top-down estimate of total BC emissions over China was 1.80 ± 0.65 Tg/yr in 2006, 0.5% lower than the bottom-up inventory of Zhang et al. (2009) but with smaller uncertainty.

2011
Yuxuan Wang, Xuan Wang, Yutaka Kondo, Mizuo Kajino, J. William Munger, and Jiming Hao. 2011. “Black carbon and its correlation with trace gases at a rural site in Beijing: implications for regional emissions.” Journal of Geophysical Research, 116, D24. Publisher's VersionAbstract
The mass concentrations of black carbon (BC) were measured continuously at Miyun, a rural site near Beijing, concurrently with some trace gases (CO, CO2, NOy, SO2) during the nonheating seasons of 2010 (April to October). The average concentration of BC was 2.26 ± 2.33 μg m−3. About 70%–100% of the air masses arriving at the site from June to September were from the source region of Beijing and the North China Plain (NCP), while in the spring, 40% were of continental background origin. BC had moderate to strong positive correlations with CO (R2 = 0.51), NOy (R2 = 0.58), and CO2 (nonsummer, R2 = 0.54), but not with SO2 (R2 < 0.1). The observed ΔBC/ΔCO ratio was 0.0050 ± 0.0001 μg m−3/ppbv for the regional air masses (excluding the influence of biomass burning). This ratio increased by 68% to 0.0084 ± 0.0004 μg m−3/ppbv after excluding the influence of wet deposition. Accounting further for the impact of atmospheric processes on the observation, we derived an average top‐down BC/CO emission ratio of 0.0095 ± 0.002 μg m−3/ppbv for the source region of Beijing and NCP that is 18%–21% lower than the average emission ratio from the bottom‐up inventory of Zhang et al. (2009), whereas the difference is substantially lower than the uncertainty of emissions for either species. The difference between the mean bottom‐up and top‐down emission ratios is most likely to be attributed to the residential sector, which needs to have a lower share in the total emissions of BC or a much lower BC/CO emission ratio. The industry and transportation sectors are found to be dominant sources of BC from Beijing and the NCP rather than from the residential sector as suggested by the bottom‐up inventory.
2010
Yuxuan Wang, J. William Munger, Shicheng Xu, Michael B. McElroy, Jiming Hao, Chris P Nielsen, and Hong Ma. 2010. “CO2 and its correlation with CO at a rural site near Beijing: Implications for combustion efficiency in China.” Atmospheric Chemistry and Physics, 10, Pp. 8881-8897. Publisher's VersionAbstract
Although China has surpassed the United States as the world’s largest carbon dioxide emitter, in situ measurements of atmospheric CO2 have been sparse in China. This paper analyzes hourly CO2 and its correlation with CO at Miyun, a rural site near Beijing, over a period of 51 months (Dec 2004 through Feb 2009). The CO2-CO correlation analysis evaluated separately for each hour of the day provides useful information with statistical significance even in the growing season. We found that the intercept, representing the initial condition imposed by global distribution of CO2 with influence of photosynthesis and respiration, exhibits diurnal cycles differing by season. The background CO2 (CO2,b) derived from Miyun observations is comparable to CO2 observed at a Mongolian background station to the northwest. Annual growth of overall mean CO2 at Miyun is estimated at 2.7 ppm yr−1 while that of CO2,b is only 1.7 ppm yr−1 similar to the mean growth rate at northern mid-latitude background stations. This suggests a relatively faster increase in the regional CO2 sources in China than the global average, consistent with bottom-up studies of CO2 emissions. For air masses with trajectories through the northern China boundary layer, mean winter CO2/CO correlation slopes (dCO2/dCO) increased by 2.8±0.9 ppmv/ppmv or 11% from 2005–2006 to 2007–2008, with CO2 increasing by 1.8 ppmv. The increase in dCO2/dCO indicates improvement in overall combustion efficiency over northern China after winter 2007, attributed to pollution reduction measures associated with the 2008 Beijing Olympics. The observed CO2/CO ratio at Miyun is 25% higher than the bottom-up CO2/CO emission ratio, suggesting a contribution of respired CO2 from urban residents as well as agricultural soils and livestock in the observations and uncertainty in the emission estimates.
Yuxuan Wang, Michael B. McElroy, J. William Munger, Jiming Hao, Hong Ma, and Chris P Nielsen. 2010. “Year-round measurements of O3 and CO at a rural site near Beijing: Variations in their correlations.” Tellus B: Chemical and Physical Meteorology, 62, 4, Pp. 228-241. Publisher's VersionAbstract
We examine seasonal variations of carbon monoxide (CO), ozone (O3), and their relationships observed over the course of 3 yr (2005–2007) at Miyun, a rural site 100 km north of Beijing. Monthly mean afternoon mixing ratios of CO have broad maxima in winter and a secondary peak in June. Monthly mean afternoon O3 shows a clear seasonal pattern with a major peak in June (85 ppb), a secondary peak in September (65 ppb) and minimum in winter (50–55 ppb). The seasonal cycles of O3 and CO are associated with seasonal changes in dominant synoptic pattern. Substantial interannual variability is found for CO which is attributed to the interannual variability of meteorology and emissions from biomass burning. The seasonality and magnitude of background CO and O3 derived at Miyun are consistent with observations at upwind remote continental sites. The O3–CO correlation slope is about 0.07 ppb ppb−1 on average in summer, significantly lower than the typical slope of 0.3 ppb ppb−1 reported for developed countries. The O3–CO correlation slope shows large gradients for different types of air masses (0.133 ± 0.017 ppb ppb−1 in aged urban pollution plumes and 0.047 ± 0.008 ppb ppb−1 in biomass burning plumes), suggesting that the conventional method of direct scaling the mean O3–CO slope by CO emissions to deduce O3 production rate is subject to large uncertainties if applied for China.
2009
Yuxuan Wang, Jiming Hao, Michael B. McElroy, J. William Munger, Hong Ma, Dan Chen, and Chris P Nielsen. 2009. “Ozone air quality during the 2008 Beijing Olympics: Effectiveness of emission restrictions.” Atmospheric Chemistry and Physics, 9, 14, Pp. 5237-5251. Publisher's VersionAbstract
A series of aggressive measures was launched by the Chinese government to reduce pollutant emissions from Beijing and surrounding areas during the Olympic Games. Observations at Miyun, a rural site 100 km downwind of the Beijing urban center, show significant decreases in concen-trations of O3, CO, NOy, and SO2 during August 2008, rel-ative to August 2006–2007. The mean daytime mixing ratio of O3 was lower by about 15 ppbv, reduced to 50 ppbv, in August 2008. The relative reductions in daytime SO2, CO, and NOy were 61%, 25%, and 21%, respectively. Changes in SO2 and in species correlations from 2007 to 2008 indicate that emissions of SO2, CO, and NOx were reduced at least by 60%, 32%, and 36%, respectively, during the Olympics. Analysis of meteorological conditions and interpretation of observations using a chemical transport model suggest that although the day-to-day variability in ozone is driven mostly by meteorology, the reduction in emissions of ozone pre-cursors associated with the Olympic Games had a signifi-cant contribution to the observed decrease in O3 during Au-gust 2008, accounting for 80% of the O3 reduction for the month as a whole and 45% during the Olympics Period (8–24 August). The model predicts that emission restrictions such as those implemented during the Olympics can affect O3 far beyond the Beijing urban area, resulting in reductions in boundary layer O3 of 2–10 ppbv over a large region of the North China Plain and Northeastern China.
Potential for wind generated electricity in China
Michael B. McElroy, Xi Lu, Chris P Nielsen, and Yuxuan Wang. 2009. “Potential for wind generated electricity in China.” Science, 325, 5946, Pp. 1378-1380. Publisher's VersionAbstract
Wind offers an important alternative to coal as a source of energy for generation of electricity in China with the potential for substantial savings in carbon dioxide emissions. Wind fields derived from assimilated meteorological data are used to assess the potential for wind-generated electricity in China subject to the existing government-approved bidding process for new wind farms. Assuming a guaranteed price of 0.516 RMB (7.6 U.S. cents) per kilowatt-hour for delivery of electricity to the grid over an agreed initial average period of 10 years, it is concluded that wind could accommodate all of the demand for electricity projected for 2030, about twice current consumption. Electricity available at a concession price as low as 0.4 RMB per kilowatt-hour would be sufficient to displace 23% of electricity generated from coal.

Final Manuscript in DASH
This paper was the cover article of this issue of Science; click here (http://www.sciencemag.org/content/325/5946.cover-expansion) to see the cover image of wind turbines near the Great Wall of China.

Dan Chen, Yuxuan Wang, Michael B. McElroy, Kebin He, Robert M Yantosca, and Phillipe Le Sager. 2009. “Regional CO pollution in China simulated by the high-resolution nested-grid GEOS-Chem model.” Atmospheric Chemistry and Physics, 9, 11, Pp. 3825-3839. Publisher's VersionAbstract
An updated version of the nested-grid GEOS-Chem model is developed allowing for higher horizontal (0.5×0.667) resolution as compared to global models. CO transport over a heavily polluted region, the Beijing-Tianjin-Hebei (BTH) city cluster in China, and the pattern of outflow from East China in summertime are investigated. Compari-son of the nested-grid with global models indicates that the fine-resolution nested-grid model is capable of resolving in-dividual cities with high associated emission intensities. The nested-grid model indicates the presence of a high CO col-umn density over the Sichuan Basin in summer, attributable to the low-level stationary vortex associated with the Basin’s topographical features. The nested-grid model provides good agreement also with measurements from a suburban monitor-ing site in Beijing during summer 2005. Tagged CO simula-tion results suggest that regional emissions make significant contributions to elevated CO levels over Beijing on polluted days and that the southeastward moving cyclones bringing northwest winds to Beijing are the key meteorological mech-anisms responsible for dispersion of pollution over Beijing in summer. Overall CO fluxes to the NW Pacific from Asia are found to decrease by a factor of 3–4 from spring to sum-mer. Much of the seasonal change is driven by decreas-ing fluxes from India and Southeast Asia in summer, while fluxes from East China are only 30% lower in summer than in spring. Compared to spring, summertime outflow from Chi-nese source regions is strongest at higher latitudes (north of 35 N). The deeper convection in summer transporting CO to higher altitudes where export is more efficient is largely responsible for enhanced export in summer.
2008
Yuxuan Wang, Michael B. McElroy, J. William Munger, Jiming Hao, Hong Ma, Chris P Nielsen, and Yaosheng Chen. 2008. “Variations of O3 and CO in summertime at a rural site near Beijing.” Atmospheric Chemistry and Physics, 8, 21, Pp. 6355-6363. Publisher's VersionAbstract
Large intra-season differences in mixing ratios of CO and O3 were detected at Miyun, a rural site north of Beijing, in summer 2006. Despite an increase in mean daytime mixing ratio of CO from 500 ppbv in June to 700 ppbv in July, mean daytime O3 dropped from 67 ppbv in June to 50 ppbv in July and August. The observed changes in CO and O3 are attributed to the influence of the summer monsoonal circulation that develops over the North China Plain in July. Photochemical production of O3 is reduced as a consequence of increased cloudiness during July and August, as indicated by the strong negative correlation observed between O3 and satellite observations of cloud optical depth, with cloudiness having little effect on CO. The analysis suggests a strategy
for emission controls that could be implemented in an economically
efficient manner to minimize the frequency of high levels of O3 during summer in Beijing.
2007
Yuxuan Wang, Michael B. McElroy, Randall V Martin, David G Streets, Qiang Zhang, and Tung-May Fu. 2007. “Seasonal variability of NOx emissions over east China constrained by satellite observations: Implications for combustion and microbial sources.” Journal of Geophysical Research, 112, D06301. Publisher's VersionAbstract
Observations of tropospheric column densities of NO2 obtained from the Global Ozone Monitoring Experiment (GOME) for a 3‐year period (1997, 1998, and 2000) are used to derive average seasonal variations in surface emissions of NOx from east China (100–123°E, 20–42°N). The retrieval allows for zonal variations in the contribution of the stratosphere to the NO2 column and removes a bias of ±10% on the seasonality of retrieved columns introduced by cloud screening. The top‐down inventory is constructed using an inversion approach with a global 3‐D chemical transport model (GEOS‐Chem) and combined subsequently with the a priori inventory to develop an a posteriori inventory. The contribution of background NO2 arising from nonsurface sources (lightning) and long‐range transport of emissions originating outside of east China is accounted for in the inversion. The a posteriori estimate of overall emissions for east China, 4.66 Tg N/yr (±30% uncertainty), is 33% higher than the a priori value and is shown to improve agreement with surface measurements of nitrate wet deposition and concentrations of NOy observed in China. On the basis of multiple constraints on the spatial and seasonal variations of combustion and microbial processes, the a posteriori inventory is partitioned among emissions from biomass burning, fuel combustion, and microbial activity (or soil emissions). Emission of NOx from biomass burning in east China is estimated as 0.08 TgN/yr ± 50% in the a posteriori inventory, increased by about a factor of 2 from the a priori estimate. The resulting a posteriori inventory for fuel combustion (3.72 TgN/yr ± 32%) is about 15% higher than the a priori and exhibits a distinct maximum in winter, in contrast to the weak seasonality indicated in the a priori inventory. The a posteriori value for the microbial source of NOx (0.85 TgN/yr ± 40%) is about a factor of 3 higher than the a priori value, amounting to 23% of combustion sources for east China and significantly higher than a priori value of 7%. The microbial source is unimportant in winter. It peaks in summer, accounting for as much as 43% of the combustion source for that season, and is significant also in spring and fall. This seasonality is attributed to the timing of fertilizer application and to the influence of seasonally variable environmental factors including temperature and precipitation.
Yuxuan Wang, Michael B. McElroy, K. Folkert Boersma, Henk J Eskes, and Pepijn J Veefkind. 2007. “Traffic restrictions associated with the Sino-African Summit: Reductions of NOX detected from space.” Geophysical Research Letters, 34, L08814. Publisher's VersionAbstract
Aggressive measures were instituted by the Beijing municipal authorities to restrict vehicular traffic in the Chinese capital during the recent Sino-African Summit. We show that reductions in associated emissions of NOx were detected by the Dutch-Finnish Ozone Monitoring Instrument (OMI) aboard the Aura satellite. Interpretation of these data using a 3-dimensional chemical transport model indicates that emissions of NOx were reduced by 40% over the period of November 4 to 6, 2006, for which the restrictions were in place.
2005
Michael B. McElroy and Yuxuan Wang. 2005. “Human and animal wastes: Implications for atmospheric N2O and NOX.” Global Biogeochemical Cycles, 19, 2. Publisher's VersionAbstract
More than 220 Tg N are processed annually through the global agriculture/animal/human food chain. It is suggested that aerobic denitrification, reduction of nitrite formed in the first stage of nitrification, is an important source not only of global N2O but also of NOx. A simple top‐down method indicates a globally averaged yield of 2% for N2O emitted as a consequence of human disturbances to the global nitrogen cycle. This yield can account not only for the contemporary budget of atmospheric N2O but also for trends observed over the past 1000 years. The associated microbial source of NOx is estimated assuming a NOx/N2O ratio of 3, consistent with results from a variety of laboratory and field studies. This source is significant, particularly for large developing countries such as China and India for which its contribution is comparable to that from fossil fuel.
2004
Y.X. Wang, M.B. McElroy, T. Wang, and P.I. Palmer. 2004. “Asian emissions of CO and NOX: Constraints from aircraft and Chinese station data.” Journal of Geophysical Research, 109, D24304. Publisher's Version

Pages