Economy

2021
Jinzhao Yang, Yu Zhao, Jing Cao, and Chris P. Nielsen. 2021. “Co-benefits of carbon and pollution control policies on air quality and health till 2030 in China.” Environment International, 152, 2021. Publisher's VersionAbstract
Facing the dual challenges of climate change and air pollution, China has made great efforts to explore the co-control strategies for the both. We assessed the benefits of carbon and pollution control policies on air quality and human health, with an integrated framework combining an energy-economic model, an air quality model and a concentration–response model. With a base year 2015, seven combined scenarios were developed for 2030 based on three energy scenarios and three end-of-pipe control ones. Policy-specific benefits were then evaluated, indicated by the reduced emissions, surface concentrations of major pollutants, and premature deaths between scenarios. Compared to the 2030 baseline scenario, the nationwide PM2.5- and O3-related mortality was expected to decline 23% or 289 (95% confidence interval: 220–360) thousand in the most stringent scenario, and three quarters of the avoided deaths were attributed to the end-of-pipe control measures. Provinces in heavily polluted and densely populated regions would benefit more from carbon and pollution control strategies. The population fractions with PM2.5 exposure under the national air quality standard (35 μg/m3) and WHO guideline (10 μg/m3) would be doubled from 2015 to 2030 (the most stringent scenario), while still very few people would live in areas with the WHO guideline achieved for O3 (100 μg/m3). Increased health impact of O3 suggested a great significance of joint control of PM2.5 and O3 in future policy-making.
Jing Cao, Hancheng Dai, Shantong Li, Chaoyi Guo, Mun Ho, Wenjia Cai, Jianwu He, Hai Huang, Jifeng Li, Yu Liu, Haoqi Qian, Can Wang, Libo Wu, and Xiliang Zhang. 2021. “The general equilibrium impacts of carbon tax policy in China: a multi-model assessment.” Energy Economics, 99, July 2021, Pp. 105284. Publisher's VersionAbstract
We conduct a multi-model comparison of a carbon tax policy in China to examine how different models simulate the impacts in both near-term 2020, medium-term 2030, and distant future 2050. Though Top-down computable general equilibrium(CGE) models have been applied frequently on climate or other environmental/energy policies to assess emission reduction, energy use and economy-wide general equilibrium outcomes in China, the results often vary greatly across models, making it challenging to derive policies. We compare 8 China CGE models with different characteristics to examine how they estimate the effects of a plausible range of carbon tax scenarios – low, medium and high carbon taxes.. To make them comparable we impose the same population growth, the same GDP growth path and world energy price shocks. We find that the 2030 NDC target for China are easily met in all models, but the 2060 carbon neutrality goal cannot be achieved even with our highest carbon tax rates. Through this carbon tax comparison, we find all 8 CGE models differ substantially in terms of impacts on the macroeconomy, aggregate prices, energy use and carbon reductions, as well as industry level output and price effects. We discuss the reasons for the divergent simulation results including differences in model structure, substitution parameters, baseline renewable penetration and methods of revenue recycling.
2020
Jing Cao, Mun S. Ho, and Wenhao Hu. 2020. “Analyzing carbon price policies using a general equilibrium model with household energy demand functions.” In Measuring Economic Growth and Productivity: Foundations, KLEMS Production Models, and Extensions, edited by Barbara Fraumeni. Cambridge, MA: Academic Press. Publisher's VersionAbstract

Multi-sector general equilibrium models are used to simulate the effects of environmental policies on industry output and consumption at disaggregated levels. The specification of household demand in such models often use simpler forms such as CES or Linear Expenditure Systems since there are few estimates of more flexible systems. We estimate a 2-stage translog utility function that explicitly accounts for detailed energy expenditures to allow us to capture the price and income effects more accurately than these simpler forms. We incorporate this into a China growth model to simulate the effects of a carbon price to achieve the government targets for the Climate Change (Paris) agreements.

Final Manuscript in DASH.
An edited volume dedicated to Prof. Dale W. Jorgenson by his students and collaborators.

Jing Cao, Mun S Ho, and Rong Ma. 2020. “Analyzing carbon pricing policies using a general equilibrium model with production parameters estimated using firm data.” Energy Economics. Publisher's VersionAbstract

Policy simulation results of Computable General Equilibrium (CGE) models largely hinge on the choices of substitution elasticities among key input factors. Currently, most CGE models rely on the common elasticities estimated from aggregated data, such as the GTAP model elasticity parameters. Using firm level data, we apply the control function method to estimate CES production functions with capital, labor and energy inputs and find significant heterogeneity in substitution elasticities across different industries. Our capital-labor substitution elasticities are much lower than the GTAP values while our energy elasticities are higher. We then incorporate these estimated elasticities into a CGE model to simulate China's carbon pricing policies and compare with the results using GTAP parameters. Our less elastic K-L substitution lead to lower base case GDP growth, but our more elastic energy substitution lead to lower coal use and carbon emissions. In the carbon tax policy exercises, we find that our elasticities lead to easier reductions in coal use and carbon emissions.

Jing Cao, Mun S. Ho, Wenhao Hu, and Dale Jorgenson. 2020. “Effective labor supply and growth outlook in China.” China Economic Review, 61, Pp. 101398. Publisher's VersionAbstract
The falling projections of working-age population in China has led to predictions of much slower economic growth. We consider three mechanisms that could contribute to higher effective labor supply growth – further improvement in educational attainment due to cohort replacement and rising college enrollment, improvement in aggregate labor quality due to urbanization, and higher labor force participation due to later retirement. We find that these factors result in a projected growth rate of effective labor input of 0.40% for 2015-2030 compared to -0.60% for working age population. As a result, the projected growth rate of GDP will be 5.80% for 2015-2030 compared to 5.23% if these factors are ignored.
Richard Goettle, Mun S. Ho, and Peter Wilcoxen. 2020. “Emissions accounting and carbon tax incidence in CGE models: bottom-up versus top-down.” In Measuring Economic Growth and Productivity: Foundations, KLEMS Production Models, and Extensions, edited by Fraumeni, B, 1st ed. Cambridge, MA: Academic Press. Publisher's VersionAbstract
Multi-sector general equilibrium models are the work-horses used to analyze the impact of carbon prices in climate policy discussions. Such models often have distinct industries to represent coal, liquid fuels, and gas production where the output over time is represented by quantity and price indexes. The industries that buy these fuels, however, do not use a common homogenous quantity (e.g., steam coal vs. metallurgical coal) and have distinct purchasing price indexes. In accounting for energy use or CO2 emissions, modelers choose to attach coefficients either bottom-up to a sector specific input index or top-down to an average output index and this choice has a direct bearing on the incidence of carbon taxation. We discuss how different accounting methods for the differences in prices can have a large effect on the simulated impact of carbon prices. We emphasize the importance for modelers to be explicit about their methods.
An edited volume dedicated to Prof. Dale W. Jorgenson by his students and collaborators.  Final Manuscript in DASH
Jing Cao, Mun S. Ho, Wenhao Hu, and Dale W. Jorgensen. 2020. “Estimating flexible consumption functions for urban and rural households in China.” China Economic Review, 61, Pp. 101453. Publisher's VersionAbstract

There are few comprehensive studies of household consumption in China due to data restrictions. This prevents the calculation of inequality indices based on consumption. Secondly, this makes a comprehensive analysis of policies that affect consumption difficult; economy-wide models used for analysis often have to employ simple consumption forms with unit income elasticities. We estimate a translog demand system distinguished by demographic characteristics, giving price and income elasticities that should be useful for policy analysis. We estimate separate functions for urban and rural households using household expenditure data and detailed commodity prices (1995-2006). This allows future analysis of social welfare and inequality based on consumption to supplement existing studies based on income. To illustrate an application of the model, we project consumption composition based on projected prices, incomes and demographic changes – aging, education improvement and urbanization.

Mun Ho, Wolfgang Britz, Ruth Delzeit, Florian Leblanc, Roson Roberto, Franziska Schuenemann, and Matthias Weitzel. 2020. “Modelling consumption and constructing long-term baselines in final demand.” Journal of Global Economic Analysis, 5. Publisher's VersionAbstract
Modelling and projecting consumption, investment and government demand by detailed commodities in CGE models poses many data and methodological challenges. We review the state of knowledge of modelling consumption of commodities (price and income elasticities and demographics), as well as the historical trends that we should be able to explain. We then discuss the current approaches taken in CGE models to project the trends in demand at various levels of commodity disaggregation. We examine the pros and cons of the various approaches to adjust parameters over time or using functions of time and suggest a research agenda to improve modelling and projection. We compare projections out to 2050 using LES, CES and AIDADS functions in the same CGE model to illustrate the size of the differences. In addition, we briefly discuss the allocation of total investment and government demand to individual commodities.
Jing Cao, Mun S Ho, Wenhao Hu, and Dale W Jorgenson. 2020. “Urban household consumption in China: price, income and demographic effects.” Review of Development Economics. Publisher's Version
2019
Jaume Freire-González and Mun S. Ho. 2019. “Carbon taxes and the double dividend hypothesis in a recursive-dynamic CGE model for Spain.” Economic Systems Research, 31:2, Pp. 267-284.Abstract
A carbon tax is potentially a policy that can reduce CO2 emissions and mitigate climate risks, at lowest economy-wide costs. We develop a dynamic CGE model for Spain to assess the economic and environmental effects of a carbon tax, and test the double dividend (DD) hypothesis. We simulate the impact of three carbon taxes: €10, €20 and €30 per ton of CO2. For each tax, four ‘revenue recycling’ scenarios are examined: a reduction of taxes on capital, on labor, on value-added tax, and a scenario in which revenues are not recycled. We find a DD for taxes of €10/ton and lower, within five to seven years of implementation. We estimate an annual CO2 emissions reduction of around 10% with this tax. Under some circumstances, the DD can be achieved for a tax of €20/ton. In any case, recycling revenues to cut pre-existing taxes reduces costs of imposing carbon taxes.
Jing Cao, Mun S. Ho, Dale W. Jorgenson, and Chris P. Nielsen. 2019. “China’s emissions trading system and an ETS-carbon tax hybrid.” Energy Economics, 81, Pp. 741-753. Publisher's VersionAbstract
China is introducing a national carbon emission trading system (ETS), with details yet to be finalized. The ETS is expected to cover only the major emitters but it is often argued that a more comprehensive system will achieve the emission goals at lower cost. We first examine an ETS that covers both electricity and cement sectors and consider an ambitious cap starting in 2017 that will meet the official objective to reduce the carbon-GDP intensity by 60-65% by 2030 compared to 2005 levels. The two ETS-covered industries are compensated with an output-based subsidy to represent the intention to give free permits to the covered enterprises. We then consider a hybrid system where the non-ETS sectors pay a carbon tax and share in the CO2 reduction burden. Our simulations indicate that hybrid systems will achieve the same CO2 goals with lower permit prices and GDP losses. We also show how auctioning of the permits improves the efficiency of the ETS and the hybrid systems. Finally, we find that these CO2 control policies are progressive in that higher incomes households bear a bigger burden.
Appendix
Jing Cao, Mun S. Ho, Yating Li, Richard G. Newell, and William A. Pizer. 2019. “Chinese residential electricity consumption estimation and forecast using micro-data.” Resource and Energy Economics, 56, Pp. 6-27. Publisher's VersionAbstract
Based on econometric estimation using data from the Chinese Urban Household Survey, we develop a preferred forecast range of 85–143 percent growth in residential per capita electricity demand over 2009–2025. Our analysis suggests that per capita income growth drives a 43% increase, with the remainder due to an unexplained time trend. Roughly one-third of the income-driven demand comes from increases in the stock of specific major appliances, particularly AC units. The other two-thirds comes from non-specific sources of income-driven growth and is based on an estimated income elasticity that falls from 0.28 to 0.11 as income rises. While the stock of refrigerators is not projected to increase, we find that they contribute nearly 20 percent of household electricity demand. Alternative plausible time trend assumptions are responsible for the wide range of 85–143 percent. Meanwhile we estimate a price elasticity of demand of −0.7. These estimates point to carbon pricing and appliance efficiency policies that could substantially reduce demand.
Ran Hao, Tianguang Lu, Qiuwei Wu, Xinyu Chen, and Qian Ai. 2019. “Distributed piecewise approximation economic dispatch for regional power systems under non-ideal communication.” IEEE Access, 7. Publisher's VersionAbstract
Appropriate distributed economic dispatch (DED) strategies are of great importance to manage wide-area controllable generators in wide-area regional power systems. Compared with existing works related to ED, where dispatch algorithms are carried out by a centralized controller, a practical DED scheme is proposed in this paper to achieve the optimal dispatch by appropriately allocating the load to generation units while guaranteeing consensus among incremental costs. The ED problem is decoupled into several parallel sub-problems by the primal-dual principle to address the computational issue of satisfying power balance between the demand and the supply from the distributed regional power system. The feasibility test and an innovative mechanism for unit commitment are then designed to handle extreme operation situations, such as low load level and surplus generation. In the designed mechanism, the on/off status of units is determined in a fully distributed framework, which is solved using the piecewise approximation method and the discrete consensus algorithm. In the algorithm, the push-sum protocol is proposed to increase the system adaptation on the time-varying communication topology. Moreover, consensus gain functions are designed to ensure the performance of the proposed DED under communication noise. Case studies on a standard IEEE 30-bus system demonstrate the effectiveness of our proposed methodology
IEEE_Full_Text
Lin Zhou, Jianglong Li, Yangqing Dan, Chunping Xie, Houyin Long, and Hongxun Liu. 2019. “Entering and exiting: Productivity evolution of energy supply in China.” Sustainability, 11, 983. Publisher's VersionAbstract
The continuous entry of new firms and exit of old ones might have substantial effects on productivity of energy supply. Since China is the world’s largest energy producer, productivity of energy supply in China is a significant issue, which affects sustainability. As a technical application, this paper investigates the productivity and dynamic changes of Chinese coal mining firms. We find that the total factor productivity (TFP) growth of coal supply in China is largely lagging behind the growth rate of coal production. The entry and exit of non-state-owned enterprise (non-SOE) partially provide explanation for the dynamic change of aggregate TFP. Specifically, non-state owned entrants induced by the coal price boom after 2003, which had negative effects on TFP of energy supply, while the exit of non-SOEs had positive effects. Furthermore, there is regional heterogeneity concerning the effects of entry and exit on energy supply productivity. More entrants induced by coal price boom are concentrated in non-main production region (non-MPR), while more exits are located in MPR due to the government’s enforcement. This provides explanation for the phenomena that productivity of energy supply in MPR gradually surpasses that in non-MPR. We also anticipate our paper to enhance understanding on the energy supply-side, which might further help us make informed decisions on energy planning and environmental policies.
Hongxun Liu, Kerui Du, and Jianglong Li. 2019. “An improved approach to estimate direct rebound effect by incorporating energy efficiency: A revisit of China's industrial energy demand.” Energy Economics. Publisher's VersionAbstract
The rebound effect, or the response to energy efficiency improvement, has drawn considerable attention from economists and policymakers. However, the magnitude remains quite controversial because of the differences in the definitions and methods being used. Originating from the definition of direct rebound effect, we develop an improved approach incorporating energy efficiency. The main advantages of the proposed approach are twofold. First, it enables us to estimate the demand elasticity of useful energy service with respect to energy service price. The estimates are more consistent with the definition of rebound effect and are more effective. Second, it decomposes direct rebound effect into substitution and output channels, enabling us to further understand the microeconomic mechanisms. Applying this method, we assess the direct energy rebound effect in China’s industrial sectors. We find that the direct rebound effect for the industry is 37.0%, and the substitution and output channels contribute to 13.1% and 23.9%, respectively. Substantial variations in the magnitudes and mechanisms occur by sector. For heavy industry, most energy rebound is induced by output expansion because of its sizeable cost decrease from efficiency improvements. Unlike heavy industry, most energy rebound in light industry comes from substituting energy service for other inputs because firms in light industry are more flexible in adjusting production inputs. Our results provide evidences for the importance of energy efficiency measures, and highlight the necessity of differentiated measures according to the sectoral characteristics.
James K. Hammitt, Fangli Geng, Xiaoqi Guo, and Chris P. Nielsen. 2019. “Valuing mortality risk in China: Comparing stated-preference estimates from 2005 and 2016.” Journal of Risk & Uncertainty, 58, 2-3, Pp. 167–186. Publisher's VersionAbstract
We estimate the marginal rate of substitution of income for reduction in current annual mortality risk (the “value per statistical life” or VSL) using stated-preference surveys administered to independent samples of the general population of Chengdu, China in 2005 and 2016. We evaluate the quality of estimates by the theoretical criteria that willingness to pay (WTP) for risk reduction should be strictly positive and nearly proportional to the magnitude of the risk reduction (evaluated by comparing answers between respondents) and test the effect of excluding respondents whose answers violate these criteria. For subsamples of respondents that satisfy the criteria, point estimates of the sensitivity of WTP to risk reduction are consistent with theory and yield estimates of VSL that are two to three times larger than estimated using the full samples. Between 2005 and 2016, estimated VSL increased sharply, from about 22,000 USD in 2005 to 550,000 USD in 2016. Income also increased substantially over this period. Attributing the change in VSL solely to the change in real income implies an income elasticity of about 3.0. Our results suggest that estimates of VSL from stated-preference studies in which WTP is not close to proportionate to the stated risk reduction may be biased downward by a factor of two or more, and that VSL is likely to grow rapidly in a population with strong economic growth, which implies that environmental-health, safety, and other policies should become increasingly protective.
2018
Yaowen Zhang, Ling Shao, Xudong Sun, Mengyao Han, Xueli Zhao, Jing Meng, Bo Zhang, and Han Qiao. 2018. “Outsourcing natural resource requirements within China.” Journal of Environmental Management, 228, Pp. 292-302. Publisher's VersionAbstract

Consumption demands are final drivers for the extraction and allocation of natural resources. This paper investigates demand-driven natural resource requirements and spatial outsourcing within China in 2012 by using the latest multi-regional input-output model. Exergy is adopted as a common metric for natural resources input. The total domestic resource exergy requirements amounted to 125.5 EJ, of which the eastern area contributed the largest share of 44.5%, followed by the western area (23.9%), the central area (23.0%) and the northeastern area (8.6%). Investment was the leading final demand category, accounting for 52.9% (66.4 EJ) of national total embodied resource use (ERU). The total trade volumes of embodied resource were equivalent to 69.6% of the total direct resource input (DRI), mostly transferred from the central and western regions such as Inner Mongolia, Shanxi, Shaanxi and Xinjiang to the eastern regions such as Jiangsu, Zhejiang, Guangdong and Shanghai. The northeastern and eastern areas had physical net imports of 1213.5 PJ and 38452.6 PJ, while the central and western inland areas had physical net exports of 6364.5 PJ and 33301.5 PJ, respectively. Shanghai, Beijing, Zhejiang, Jiangsu and Guangdong had prominent ERUs which respectively were 101.6, 12.6, 11.7, 8.4 and 4.3 times of their DRIs. The ERUs of Inner Mongolia, Shaanxi, Shanxi, Ningxia and Guizhou were equal to only 17.6%, 25.3%, 27.9%, 46.0% and 50.2% of their DRIs, respectively. Regional uneven development resulted in imbalanced resource requirements across China. The findings can provide a deep understanding of China's resource-driven economic development mode, and contribute to reducing regional resource footprints and their environment outcomes under the “new normal economy”.

    Rong Ma, Bin Chen, Chenghe Guan, Jing Meng, and Bo Zhang. 2018. “Socioeconomic determinants of China’s growing CH4 emissions.” Journal of Environmental Management, 228, 15 December 2018, Pp. 103-116. Publisher's VersionAbstract
    Reducing CH4 emissions is a major global challenge, owing to the world-wide rise in emissions and concentration of CH4 in the atmosphere, especially in the past decade. China has been the greatest contributor to global anthropogenic CH4 emissions for a long time, but current understanding towards its growing emissions is insufficient. This paper aims to link China's CH4 emissions during 2005–2012 to their socioeconomic determinants by combining input-output models with structural decomposition analysis from both the consumption and income perspectives. Results show that changes in household consumption and income were the leading drivers of the CH4 growth in China, while changes in efficiency remained the strongest factor offsetting CH4 emissions. After 2007, with the global financial crisis and economic stimulus plans, embodied emissions from exports plunged but those from capital formation increased rapidly. The enabled emissions in employee compensation increased steadily over time, whereas emissions induced from firms' net surplus decreased gradually, reflecting the reform on income distribution. In addition, at the sectoral level, consumption and capital formation respectively were the greatest drivers of embodied CH4 emission changes from agriculture and manufacturing, while employee compensation largely determined the enabled emission changes across all industrial sectors. The growth of CH4 emissions in China was profoundly affected by the macroeconomic situation and the changes of economic structure. Examining economic drivers of anthropogenic CH4emissions can help formulate comprehensive mitigation policies and actions associated with economic production, supply and consumption.
    Govinda R. Timilsina, Jing Cao, and Mun S. Ho. 2018. “Carbon tax for achieving China's NDC: Simulations of some design features using a CGE model.” Climate Change Economics, 9, 3. Publisher's VersionAbstract
    China has set a goal of reducing its CO2 intensity of GDP by 60–65% from the 2005 level in 2030 as its nationally determined contribution (NDC) under the Paris Climate Change Agreement. While the government is considering series of market and nonmarket measures to achieve its target, this study assesses the economic consequences if the target were to meet through a market mechanism, carbon tax. We used a dynamic computable general equilibrium model of China for the analysis. The study shows that the level of carbon tax to achieve the NDC target would be different depending on its design features. An increasing carbon tax that starts at a small rate in 2015 and rises to a level to meet the NDC target in 2030 would cause smaller GDP loss than the carbon tax with a constant rate would do. The GDP loss due to the carbon tax would be smaller when the tax revenue is utilized to cut existing distortionary taxes than when it is transferred to households as a lump-sum rebate.
    Jaume Freire-González and Mun S. Ho. 2018. “Environmental fiscal reform and the double dividend: evidence from a dynamic general equilibrium model.” Sustainability, 10, 2. Publisher's VersionAbstract
    An environmental fiscal reform (EFR) represents a transition of a taxation system toward one based in environmental taxation, rather than on taxation of capital, labor, or consumption. It differs from an environmental tax reform (ETR) in that an EFR also includes a reform of subsidies which counteract environmental policy. This research details different ways in which an EFR is not only possible but also a good option that provides economic and environmental benefits. We have developed a detailed dynamic CGE model examining 101 industries and commodities in Spain, with an energy and an environmental extension comprising 31 pollutant emissions, in order to simulate the economic and environmental effects of an EFR. The reform focuses on 39 industries related to the energy, water, transport and waste sectors. We simulate an increase in taxes and a reduction on subsidies for these industries and at the same time we use new revenues to reduce labor, capital and consumption taxes. All revenue recycling options provide both economic and environmental benefits, suggesting that the “double dividend” hypothesis can be achieved. After three to four years after implementing an EFR, GDP is higher than the base case, hydrocarbons consumption declines and all analyzed pollutants show a reduction.

    Pages