Yang, Xi

Haiyang Lin, Qiuwei Wu, Xinyu Chen, Xi Yang, Xinyang Guo, Jiajun Lv, Tianguang Lu, Shaojie Song, and Michael B. McElroy. 2021. “Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China.” Renewable Energy, 173, Pp. 569-580. Publisher's VersionAbstract
Hydrogen can play a key role in facilitating the transition to a future deeply decarbonized energy system and can help accommodate higher penetrations of renewables in the power system. Arguments to justify this conclusion are supported by an analysis based on real-world data from China’s Western Inner Mongolia (WIM). The economic feasibility and decarbonization potential of renewable-based hydrogen production are discussed through an integrated power-hydrogen-emission analytical framework. The framework combines a high-resolution wind resource analysis with hourly simulation for the operation of power systems and hydrogen production considering technical and economic specifications on selection of three different types of electrolyzers and two operating modes. The results indicate that using wind power to produce hydrogen could provide a cost-competitive alternative (<2 $kg-1) to WIM’s current coal-dominated hydrogen manufacturing system, contributing at the same time to important reductions in wind curtailment and CO2 emissions. The levelized cost for hydrogen production is projected to decrease in the coming decade consistent with increases in wind power capacity and decreases in capital costs for electrolyzers. Lessons learned from the study can be applied to other regions and countries to explore possibilities for larger scale economically justified and carbon saving hydrogen production with renewables.
Xi Yang, Jun Pang, Fei Teng, Ruixin Gong, and Cecilia Springer. 2021. “The environmental co-benefit and economic impact of China’s low-carbon pathways: Evidence from linking bottom-up and top-down models.” Renewable and Sustainable Energy Reviews, 136, February 2021, Pp. 110438. Publisher's VersionAbstract
Deep decarbonization pathways (DDPs) can be cost-effective for carbon mitigation, but they also have environmental co-benefits and economic impacts that cannot be ignored. Despite many empirical studies on the co-benefits of NDCs at the national or sectoral level, there is lack of integrated assessment on DDPs for their energy, economic, and environmental impact. This is due to the limitations of bottom-up and top-down models when used alone. This paper aims to fill this gap and link the bottom-up MAPLE model with a top-down CGE model to evaluate China's DDPs' comprehensive impacts. First, results show that carbon dioxide emissions can be observed to peak in or before 2030, and non-fossil energy consumption in 2030 is around 27%, which is well above the NDC target of 20%. Second, significant environmental co-benefits can be expected: 7.1 million tons of SO2, 3.96 million tons of NOx, and 1.02 million tons of PM2.5 will be reduced in the DDP scenario compared to the reference scenario. The health co-benefits demonstrated with the model-linking approach is around 678 billion RMB, and we observe that the linked model results are more in accordance with the conclusions of existing studies. Third, after linking, we find the real GDP loss from deep decarbonization is reduced from 0.92% to 0.54% in 2030. If the environmental co-benefits are considered, the GDP loss is further offset by 0.39%. The primary innovation of this study is to give a full picture of DDPs' impact, considering both environmental co-benefits and economic losses. We aim to provide positive evidence that developing countries can achieve targets higher than stated in the NDCs through DDP efforts, which will have clear environmental co-benefits to offset the economic losses.