Hammitt, James

2019
James K. Hammitt, Fangli Geng, Xiaoqi Guo, and Chris P. Nielsen. 2019. “Valuing mortality risk in China: Comparing stated-preference estimates from 2005 and 2016.” Journal of Risk & Uncertainty, 58, 2-3, Pp. 167–186. Publisher's VersionAbstract
We estimate the marginal rate of substitution of income for reduction in current annual mortality risk (the “value per statistical life” or VSL) using stated-preference surveys administered to independent samples of the general population of Chengdu, China in 2005 and 2016. We evaluate the quality of estimates by the theoretical criteria that willingness to pay (WTP) for risk reduction should be strictly positive and nearly proportional to the magnitude of the risk reduction (evaluated by comparing answers between respondents) and test the effect of excluding respondents whose answers violate these criteria. For subsamples of respondents that satisfy the criteria, point estimates of the sensitivity of WTP to risk reduction are consistent with theory and yield estimates of VSL that are two to three times larger than estimated using the full samples. Between 2005 and 2016, estimated VSL increased sharply, from about 22,000 USD in 2005 to 550,000 USD in 2016. Income also increased substantially over this period. Attributing the change in VSL solely to the change in real income implies an income elasticity of about 3.0. Our results suggest that estimates of VSL from stated-preference studies in which WTP is not close to proportionate to the stated risk reduction may be biased downward by a factor of two or more, and that VSL is likely to grow rapidly in a population with strong economic growth, which implies that environmental-health, safety, and other policies should become increasingly protective.
JRU paper.pdf
2009
Xiaoqi Guo and James K Hammitt. 2009. “Compensating wage differentials with unemployment: Evidence from China.” Environmental and Resource Economics, 42, 2, Pp. 187-209. Publisher's VersionAbstract
We estimate the economic value of mortality risk in China using the compensating-wage-differential method. We find a positive and statistically significant correlation between wages and occupational fatality risk. The estimated effect is largest for unskilled workers. Unemployment reduces compensation for risk, which suggests that some of the assumptions under which compensating wage differentials can be interpreted as measures of workers’ preferences for risk and income are invalid when unemployment is high. Workers may be unwilling to quit high-risk jobs when alternative employment is difficult to obtain, violating the assumption of perfect mobility, or some workers (e.g., new migrants) may be poorly informed about between-job differences in risk, violating the assumption of perfect information. These factors suggest our estimates of the value per statistical life (VSL) in China, which range from approximately US$30,000 to US$100,000, may be biased downward. Alternative estimates adjust for heterogeneity of risk within industry by assuming that risk is concentrated among low-skill workers. These estimates, which are likely to be biased downward, range from US$7,000 to US$20,000.

This study developed a new approach to the valuation of health risk in China, for monetizing health damages of environmental degradation.

2007
Ying Zhou and James K Hammitt. 2007. “The economic value of air-pollution-related health risks in China: A contingent valuation study.” In Clearing the air: The health and economic damages of air pollution in China, edited by Mun S Ho and Chris P Nielsen. Cambridge, MA: MIT Press. Publisher's VersionAbstract

An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.

China's historic economic expansion is driven by fossil fuels, which increase its emissions of both local air pollutants and greenhouse gases dramatically. Clearing the Air is an innovative, quantitative examination of the national damage caused by China's degraded air quality, conducted in a pathbreaking, interdisciplinary U.S.-China collaboration. Its damage estimates are allocated by sector, making it possible for the first time to judge whether, for instance, power generation, transportation, or an unexpected source such as cement production causes the greatest environmental harm. Such objective analyses can reset policy priorities.

Clearing the Air uses this information to show how appropriate "green" taxes might not only reduce emissions and health damages but even enhance China's economic growth. It also shows to what extent these same policies could limit greenhouse gases, suggesting that wealthier nations have a responsibility to help China build environmental protection into its growth.

Clearing the Air is written for diverse readers, providing a bridge from underlying research to policy implications, with easily accessible overviews of issues and summaries of the findings for nonspecialists and policymakers followed by more specialized, interlinked studies of primary interest to scholars. Taken together, these analyses offer a uniquely integrated assessment that supports the book's economic and policy recommendations.

Ying Zhou, Jonathan I Levy, James K Hammitt, and John S Evans. 2007. “Population exposure to pollutants from the electric power sector using CALPUFF.” In Clearing the air: The health and economic damages of air pollution in China, edited by Mun S Ho and Chris P Nielsen. Cambridge, MA: MIT Press. Publisher's VersionAbstract

An interdisciplinary, quantitative assessment of the health and economic costs of air pollution in China, and of market-based policies to build environmental protection into economic development.

China's historic economic expansion is driven by fossil fuels, which increase its emissions of both local air pollutants and greenhouse gases dramatically. Clearing the Air is an innovative, quantitative examination of the national damage caused by China's degraded air quality, conducted in a pathbreaking, interdisciplinary U.S.-China collaboration. Its damage estimates are allocated by sector, making it possible for the first time to judge whether, for instance, power generation, transportation, or an unexpected source such as cement production causes the greatest environmental harm. Such objective analyses can reset policy priorities.

Clearing the Air uses this information to show how appropriate "green" taxes might not only reduce emissions and health damages but even enhance China's economic growth. It also shows to what extent these same policies could limit greenhouse gases, suggesting that wealthier nations have a responsibility to help China build environmental protection into its growth.

Clearing the Air is written for diverse readers, providing a bridge from underlying research to policy implications, with easily accessible overviews of issues and summaries of the findings for nonspecialists and policymakers followed by more specialized, interlinked studies of primary interest to scholars. Taken together, these analyses offer a uniquely integrated assessment that supports the book's economic and policy recommendations.

2006
James K Hammitt and Ying Zhou. 2006. “The economic value of air-pollution-related health risks in China: A contingent valuation study.” Environmental Resource Economics, 33, 3, Pp. 399-423. Publisher's VersionAbstract
The economic value of preventing adverse health effects related to air pollution is estimated using contingent valuation in three diverse locations in China. Values are estimated for three health endpoints: cold, chronic bronchitis, and fatality. Alternative statistical models are tested to study their impact on estimated willingness to pay (WTP) and on the relationship between WTP and respondent characteristics. Using the official exchange rate, the sample-average median WTP to prevent an episode of cold ranges between US$3 and US$6, the WTP to prevent a statistical case of chronic bronchitis ranges between US$500 and US$1,000, and the value per statistical life ranges between US$4,000 and US$17,000. Estimated mean values are between two and thirteen times larger. Our estimates are between about 10 and 1,000 times smaller than estimates for the US and Taiwan using official exchange rates. Indoor air quality, measured for a subset of respondents, shows no consistent relationship with WTP.
Ying Zhou, Jonathan I Levy, John S Evans, and James K Hammitt. 2006. “The influence of geographic location on population exposure to emissions from power plants throughout China.” Environment International, 32, 3, Pp. 365-373. Publisher's VersionAbstract
This analysis seeks to evaluate the influence of emission source location on population exposure in China to fine particles and sulfur dioxide. We use the concept of intake fraction, defined as the fraction of material or its precursor released from a source that is eventually inhaled or ingested by a population. We select 29 power-plant sites throughout China and estimate annual average intake fractions at each site, using identical source characteristics to isolate the influence of geographic location. In addition, we develop regression models to interpret the intake fraction values and allow for extrapolation to other sites. To model the concentration increase due to emissions from selected power plants, we used a detailed long-range atmospheric dispersion model, CALPUFF. Primary fine particles have the highest average intake fraction (1 × 10− 5), followed by sulfur dioxide (5 × 10− 6), sulfate from sulfur dioxide (4 × 10− 6), and nitrate from nitrogen oxides (4 × 10− 6). For all pollutants, the intake fractions span approximately an order of magnitude across sites. In the regression analysis, the independent variables are meteorological proxies (such as climate region and precipitation) and population at various distances from the source. We find that population terms can explain a substantial percentage of variability in the intake fraction for all pollutants (R2 between 0.86 and 0.95 across pollutants), with a significant modifying influence of meteorological regime. Near-source population is more important for primary coarse particles while population at medium to long distance is more important for primary fine particles and secondary particles. A significant portion of intake fraction (especially for secondary particles and primary fine particles) occurs beyond 500 km of the source, emphasizing the need for detailed long-range dispersion modeling. These findings demonstrate that intake fractions for power plants in China can be estimated with reasonable precision and summarized using simple regression models. The results should be useful for informing future decisions about power-plant locations and controls.
2003
Y. Zhou, Jonathan I Levy, James K Hammitt, and John S Evans. 2003. “Estimating population exposure to power plant emissions using CALPUFF: A case study in Beijing, China.” Atmospheric Environment, 37, 6, Pp. 815-826. Publisher's VersionAbstract
Epidemiological studies have shown a significant association between ambient particulate matter (PM) exposures and increased mortality and morbidity risk. Power plants are significant emitters of precursor gases of fine particulate matter. To evaluate the public health risk posed by power plants, it is necessary to evaluate population exposure to different pollutants. The concept of intake fraction (the fraction of a pollutant emitted that is eventually inhaled or ingested by a population) has been proposed to provide a simple summary measure of the relationship between emissions and exposure. Currently available intake fraction estimates from developing countries used models that look only at the near field impacts, which may not capture the full impact of a pollution source. This case study demonstrated how the intake fraction of power plant emissions in China can be calculated using a detailed long-range atmospheric dispersion model—CALPUFF. We found that the intake fraction of primary fine particles is roughly on the order of 10−5, while the intake fractions of sulfur dioxide, sulfate and nitrate are on the order of 10−6. These estimates are an order of magnitude higher than the US estimates. We also tested how sensitive the results were to key assumptions within the model. The size distribution of primary particles has a large impact on the intake fraction for primary particles while the background ammonia concentration is an important factor influencing the intake fraction of nitrate. The background ozone concentration has a moderate impact on the intake fraction of sulfate and nitrate. Our analysis shows that this approach is applicable to a developing country and it provides reasonable population exposure estimates.