Sustained emission reductions have restrained the ozone pollution over China

Citation:

Yu Zhao, Yutong Wang, Yiming Liu, Yueqi Jiang, Bo Zheng, Jia Xing, Yang Liu, Shuai Wang, and Chris Nielsen. 2023. “Sustained emission reductions have restrained the ozone pollution over China.” Nature Geoscience. Publisher's Version

Abstract:

Near-surface ozone pollution, associated with complex responses to changing precursor emissions and meteorological conditions, has become one of the biggest challenges in China’s air quality management. Here, we present the spatiotemporal evolution of ozone concentrations from 2010 to 2021 using measurements of the national air quality monitoring network. We evaluate the effectiveness of the national air pollution control programme, including Phase 1 (2013–2017) and Phase 2 (2018–2021), in reducing the ozone level over China, using an optimized machine learning approach, high-resolution emission estimates and an improved air quality model. We find that while emission changes in Phase 1 increased the ozone level over the five highly developed regions, further reductions of nitrogen oxide emissions in Phase 2 have generally constrained the ozone pollution. The changing effect of emission controls on ozone pollution is due to the shift in the prevailing regime for ozone formation and the weakened effects of aerosol declines, as emission reductions continue. We further find that current emission controls have been more effective in rural locales in four of the five regions, and more effective in summer than winter. Therefore, further control of ozone pollution should consider these regional and seasonal variations to identify the most important precursors for the pollution.

Last updated on 09/28/2023