Air Pollution, Greenhouse Gases & Climate

Meng Gao, Yihui Ding, Shaojie Song, Xiao Lu, Xinyu Chen, and Michael B. McElroy. 2018. “Secular decrease of wind power potential in India associated with warming Indian Ocean.” Science Advances, 4, 12, Pp. eaat5256. Publisher's VersionAbstract
The Indian government has set an ambitious target for future renewable power generation, including 60 GW of cumulative wind power capacity by 2022. However, the benefits of these substantial investments are vulnerable to the changing climate. On the basis of hourly wind data from an assimilated meteorology reanalysis dataset covering the 1980–2016 period, we show that wind power potential may have declined secularly over this interval, particularly in western India. Surface temperature data confirm that significant warming occurred in the Indian Ocean over the study period, leading to modulation of high pressure over the ocean. A multivariable linear regression model incorporating the pressure gradient between the Indian Ocean and the Indian subcontinent can account for the interannual variability of wind power. A series of numerical sensitivity experiments confirm that warming in the Indian Ocean contributes to subsidence and dampening of upward motion over the Indian continent, resulting potentially in weakening of the monsoonal circulation and wind speeds over India.
Meng Gao, Gufran Beig, Shaojie Song, Hongliang Zhang, Jianlin Hu, Qi Ying, Fengchao Liang, Yang Liu, Haikun Wang, Xiao Lu, Tong Zhu, Gregory Carmichael, Chris P. Nielsen, and Michael B. McElroy. 2018. “The Impact of Power Generation Emissions on Ambient PM2.5 Pollution and Human Health in China and India.” Environment International, 121, Part 1, Pp. 250-259. Publisher's VersionAbstract

Emissions from power plants in China and India contain a myriad of fine particulate matter (PM2.5, PM≤2.5 micrometers in diameter) precursors, posing significant health risks among large, densely settled populations. Studies isolating the contributions of various source classes and geographic regions are limited in China and India, but such information could be helpful for policy makers attempting to identify efficient mitigation strategies. We quantified the impact of power generation emissions on annual mean PM2.5 concentrations using the state-of-the-art atmospheric chemistry model WRF-Chem (Weather Research Forecasting model coupled with Chemistry) in China and India. Evaluations using nationwide surface measurements show the model performs reasonably well. We calculated province-specific annual changes in mortality and life expectancy due to power generation emissions generated PM2.5 using the Integrated Exposure Response (IER) model, recently updated IER parameters from Global Burden of Disease (GBD) 2015, population data, and the World Health Organization (WHO) life tables for China and India. We estimate that 15 million (95% Confidence Interval (CI): 10 to 21 million) years of life lost can be avoided in China each year and 11 million (95% CI: 7 to 15 million) in India by eliminating power generation emissions. Priorities in upgrading existing power generating technologies should be given to Shandong, Henan, and Sichuan provinces in China, and Uttar Pradesh state in India due to their dominant contributions to the current health risks.

 

Qing Yang, Hewen Zhou, Xiaoyan Zhang, Chris P. Nielsen, Jiashuo Li, Xi Lu, Haiping Yang, and Hanping Chen. 2018. “Hybrid life-cycle assessment for energy consumption and greenhouse gas emissions of a typical biomass gasification power plant in China.” Journal of Cleaner Production, 205, Pp. 661-671. Publisher's VersionAbstract

Among biomass energy technologies which are treated as the promising way to mitigate critical energy crisis and global climate change, biomass gasification plays a key role given to its gaseous fuels especially syngas for distributed power plant. However, a system analysis for the energy saving and greenhouse gas emissions abatement potentials of gasification system has been directed few attentions. This study presents a system analysis that combines process and input-output analyses of GHG emissions and energy costs throughout the full chain of activities associated with biomass gasification. Incorporating agricultural production, industrial process and wastewater treatment which is always ignored, the energy inputs in life cycle are accounted for the first commercial biomass gasification power plant in China. Results show that the non-renewable energy cost and GHG emission intensity of the biomass gasification system are 0.163 MJ/MJ and 0.137 kg CO2-eq/MJ respectively, which reaffirm its advantages over coal-fired power plants in clean energy and environmental terms. Compared with other biomass energy processes, gasification performs well as its non-renewable energy cost and CO2 intensity are in the central ranges of those for all of these technologies. Construction of the plant is an important factor in the process’s non-renewable energy consumption, contributing about 44.48% of total energy use. Wastewater treatment is the main contributor to GHG emissions. The biomass gasification and associated wastewater treatment technologies have critical influence on the sustainability and renewability of biomass gasification. The results provide comprehensive analysis for biomass gasification performance and technology improvement potential in regulating biomass development policies for aiming to achieve sustainability globally.

Bo Zhang, Xueli Zhao, Xiaofang Wu, Mengyao Han, Chenghe Guan, and Shaojie Song. 2018. “Consumption‐based accounting of global anthropogenic CH4 emissions.” Earth's Future, 6, 9, Pp. 1349-1363. Publisher's VersionAbstract

Global anthropogenic CH4 emissions have witnessed a rapid increase in the last decade. However, how this increase is connected with its socioeconomic drivers has not yet been explored. In this paper, we highlight the impacts of final demand and international trade on global anthropogenic CH4 emissions based on the consumption‐based accounting principle. We find that household consumption was the largest final demand category, followed by fixed capital formation and government consumption. The position and function of nations and major economies to act on the structure and spatial patterns of global CH4 emissions were systematically clarified. Substantial geographic shifts of CH4emissions during 2000‐2012 revealed the prominent impact of international trade. In 2012, about half of global CH4 emissions were embodied in international trade, of which 77.8% were from intermediate trade and 22.2% from final trade. Mainland China was the largest exporter of embodied CH4 emissions, while the USA was the largest importer. Developed economies such as Western Europe, the USA and Japan were major net receivers of embodied emission transfer, mainly from developing countries. CH4emission footprints of nations were closely related to their human development indexes (HDIs) and per capita gross domestic products (GDPs). Our findings could help to improve current understanding of global anthropogenic CH4 emission increases, and to pinpoint regional and sectoral hotspots for possible emission mitigation in the entire supply chains from production to consumption.

 

Jing

Commentary: Can Unlucky Number 4 Be Lucky Too? How the Chinese Superstition About “4” Made Possible a Study on the Health Effects of Air Pollution in Beijing

August 14, 2018

It is rarely possible to conduct controlled experiments in the social sciences owing to the vast number of variables that, in a “real-world” setting, can almost never be manipulated to create the ideal experimental conditions. However, there are occasionally instances when the unintended effects of certain policies create circumstances that are like an experiment, called a natural experiment. When the combination of a vehicle restriction policy in Beijing and the Chinese superstition about the...

Read more about Commentary: Can Unlucky Number 4 Be Lucky Too? How the Chinese Superstition About “4” Made Possible a Study on the Health Effects of Air Pollution in Beijing
Shaojie Song, Meng Gao, Weiqi Xu, Jingyuan Shao, Guoliang Shi, Shuxiao Wang, Yuxuan Wang, Yele Sun, and Michael McElroy. 2018. “Fine particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models.” Atmospheric Chemistry and Physics, 18, Pp. 7423-7438. Publisher's VersionAbstract
pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in North China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA) and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic) to as high as 7 (neutral). In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol phase composition as inputs (i.e., reverse mode) are sensitive to the measurement errors of ionic species and inferred pH values exhibit a bimodal distribution with peaks between −2 and 2 and between 7 and 10. Calculations using total (gas plus aerosol phase) measurements as inputs (i.e., forward mode) are affected much less by the measurement errors, and results are thus superior to those obtained from the reverse mode calculations. Forward mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5) for fine particles in North China winter haze, indicating further that ammonia plays an important role in determining this property. The differences in pH predicted by the forward mode E-AIM and ISORROPIA calculations may be attributed mainly to differences in estimates of activity coefficients for hydrogen ions. The phase state assumed, which can be either stable (solid plus liquid) or metastable (only liquid), does not significantly impact pH predictions of ISORROPIA.
China Project Spring 2018 Newsletter

China Project Spring 2018 Newsletter

May 22, 2018

This spring the Harvard-China Project continued its investigations of the “China 2030/2050” theme sponsored by the Harvard Global Institute (HGI). Our community explored a number of pressing issues, including a Nature Energy paper on the environmental implications of electric vehicle charging in China. The research, which offers a strategy for reducing CO2 emissions and improving air quality with electric vehicles in Beijing, was authored by a Harvard-Tsinghua...

Read more about China Project Spring 2018 Newsletter

Pages