Economy and Policy

Jianglong Li, Mun S. Ho, Chunping Xie, and Nicholas Stern. 2022. “China's flexibility challenge in achieving carbon neutrality by 2060.” Renewable and Sustainable Energy Reviews, 158, April, Pp. 112112. Publisher's VersionAbstract
China, with a heavy dependence on coal power, has announced a clear goal of carbon neutrality by 2060. Electrification of final energy use and high penetration of renewable energy are essential to achieve this. The resulting growth of intermittent renewables and changes in demand curve profiles require greater flexibility in the power system for real-time balancing – greater ability of generators and consumers to ramp up and down. However, the plan and market system with regulated prices makes this challenging. We discuss the options to improve flexibility, including 1) increasing supply-side flexibility, through retrofitting existing power plants to boost their responsiveness; 2) promoting flexibility from power grids, through building an efficient power grid with inter-provincial and inter-regional transmission capacity to balance spatial mismatch, given that China has a vast territory; 3) encouraging demand flexibility, through demand-response measures to enable demand shifting over time and space to address fluctuations in renewable energy generation; and 4) providing flexibility from energy storage. We consider policies to achieve this, in particular, power market reforms to unlock the flexibility potential of these sources. Regulated electricity prices and lack of auxiliary services markets are major obstacles and we discuss how markets in other countries provide lessons in providing incentives for a more flexible system.
Jianglong Li and Mun S. Ho. 2022. “Indirect cost of renewable energy: Insights from dispatching.” Energy Economics, 105, January 2022, Pp. 105778. Publisher's VersionAbstract
The rapidly falling costs of renewable energy has made them the focus of efforts in making a low-carbon transition. However, when cheap large-scale energy storage is not available, the variability of renewables implies that fossil-based technologies have to ramp up-and-down frequently to provide flexibility for matching electricity demand and supply. Here we provide a study on the indirect cost of renewable energy due to thermal efficiency loss of coal plants with such ramping requirements. Using monthly panel data for China, we show that higher renewable share is associated with fewer operating hours of coal-fired units (COHOUR). We use an instrumental variable depending on natural river flows to identify the causal effect of reduced COHOURs in raising the heat rate of coal-fired units. Specifically, a 1 percentage point increase in the share of renewables leads to a 6.4 h reduction per month, and a reduction of one COHOUR results in a 0.09 gce/kWh increase of gross heat rate (+0.03%). We estimate that the thermal efficiency loss indicates 4.77 billion US dollars of indirect cost of renewables in 2019, or 9.44 billion if we include the social cost of carbon emissions. These results indicate that we should consider the indirect impacts of renewables on total coal use and the importance of increasing flexibility of the system.
Jaume Freire-González and Mun S. Ho. 2021. “Voluntary actions in households and climate change mitigation.” Journal of Cleaner Production, 321, 25 October, Pp. 128930. Publisher's VersionAbstract
Governments foster voluntary actions within households to mitigate climate change. However, the literature suggests that they may not be as effective as expected due to rebound effects. We use a dynamic economy–energy–environment computable general equilibrium (CGE) model of the Catalan economy to simulate the effect of 75 different actions on GDP and net CO2 emissions, over a 20-year period. We also examine how a carbon tax could counteract the carbon rebound effects. We find energy rebound effects ranging from 61.77% to 117.49% for voluntary energy conservation actions, depending on where the spending is redirected, with similar carbon rebound values. In our main scenarios, where energy savings are redirected to savings and all non-energy goods proportionally, the rebound is between 64.47% and 66.90%. We also find, for these scenarios, that a carbon tax of between 2.4 and 3.6 €/ton per percentage point of voluntary energy reduction would totally offset carbon rebound effects. These results suggest that voluntary actions in households need additional measures to provide the expected results in terms of energy use reduction and climate change mitigation.

Pages