2012

2012
Xi Lu, Michael B. McElroy, Gang Wu, and Chris P Nielsen. 2012. “Accelerated reduction of SO2 emissions from the US power sector triggered by changing prices of natural gas.” Environmental Science and Technology, 46, 14, Pp. 7882-7889. Publisher's VersionAbstract
Emissions of sulfur dioxide (SO2) from the U.S. power sector decreased by 24% in 2009 relative to 2008. The Logarithmic Mean Divisia Index (LMDI) approach was applied to isolate the factors responsible for this decrease. It is concluded that 15% of the decrease can be attributed to the drop in demand for electricity triggered by the economic recession, and 28% can be attributed to switching of fuel from coal to gas responding to the decrease in prices for the latter. The largest factor in the decrease, close to 57%, resulted from an overall decline in emissions per unit of power generated from coal. This is attributed in part to selective idling of older, less efficient coal plants that generally do not incorporate technology for sulfur removal, and in part to continued investments by the power sector in removal equipment in response to the requirements limiting emissions imposed by the U.S. Environmental Protection Agency (U.S. EPA). The paper argues further that imposition of a modest tax on emissions of carbon would have ancillary benefits in terms of emissions of SO2.

Final Manuscript in DASH
This paper is from a series investigating and comparing the prospects for low- and non-carbon power generation in China and the U.S.

Yu Zhao, Chris P Nielsen, and Michael B. McElroy. 2012. “China's CO2 emissions estimated from the bottom up: Recent trends, spatial distributions, and quantification of uncertainties.” Atmospheric Environment, 59, Pp. 214-223. Publisher's VersionAbstract
China's emissions of anthropogenic CO2 are estimated using a bottom-up emission inventory framework based on a detailed categorization of economic sectors and provincial economic and energy data. It includes a newly compiled database of CO2 emission factors employing the latest field study results from China. Total annual emissions are estimated to have risen from 7126 to 9370 Mt CO2 from 2005 to 2009. Recent policies to conserve energy and reduce emissions have been effective in limiting CO2 emissions from power and iron & steel plants, but have had little effect on those from cement production. The uncertainties of China's CO2 emissions are quantified for the first time using Monte-Carlo simulation, producing a 95% confidence interval (CI) of −9% to +11% for total emissions in 2005. The largest contributors to sector-level emission uncertainty are emission factors for most industrial sources and activity levels for power plants, transportation, and residential & commercial sources. Application of province-level energy consumption and China-specific emission factors in some sectors results in higher annual emission estimates for 2005-2008 as compared with other studies, although most of those are within the 95% CIs of this study.
Yu Zhao, Chris P Nielsen, Michael B. McElroy, Lin Zhang, and Jie Zhang. 2012. “CO emissions in China: Uncertainties and implications of improved energy efficiency and emission control.” Atmospheric Environment, 49, Pp. 103-113. Publisher's VersionAbstract
A bottom-up methodology and an improved database of emission factors combining the latest domestic field measurements are developed to estimate the emissions of anthropogenic CO from China at national and provincial levels. The CO emission factors for major economic sectors declined to varying degrees from 2005 to 2009, attributed to improved energy efficiency and/or emission control regulations. Total national CO emissions are estimated at 173 Tg for 2005 and have been relatively stable for subsequent years, despite fast growth of energy consumption and industrial production. While industry and transportation sources dominated CO emissions in developed eastern and north-central China, residential combustion played a much greater role in the less developed western provinces. The uncertainties of national Chinese CO emissions are quantified using Monte Carlo simulation at −20% to +45% (95% confidence interval). Due to poor understanding of emission factors and activity levels for combustion of solid fuels, the largest uncertainties are found for emissions from the residential sector. The trends of bottom-up emissions compare reasonably to satellite observation of CO columns and to ground observations of CO2–CO correlation slopes. The increase in the ratio for emissions of CO2 relative to CO suggests that China has successfully improved combustion efficiencies across its economy in recent years, consistent with national policies to improve energy efficiency and to control criteria air pollutants.
Junling Huang and Michael B. McElroy. 2012. “The contemporary and historical budget of atmospheric CO2.” Canadian Journal of Physics, 90, 8, Pp. 707-716. Publisher's VersionAbstract
Observations of CO2 and O2 are interpreted to develop an understanding of the changes in the abundance of atmospheric CO2 that have arisen over the period 1995–2007. Fossil fuels accounted for an addition of 89.3 Gt of carbon to the atmosphere over this time period, 29% of which was transferred to the ocean, 15% to the global biosphere, with the balance (57%) retained by the atmosphere. Analysis of historical data for CO2 derived from studies of gases trapped in ice at Law Dome in Antarctica indicate that the biosphere represented a net source of atmospheric CO2 prior to 1940, switching subsequently to a net sink.
Gang Wu, Yi-Ming Wei, Chris P Nielsen, Xi Lu, and Michael B. McElroy. 2012. “A dynamic programming model of China's strategic petroleum reserve: General strategy and the effect of emergencies.” Energy Economics, 34, 4, Pp. 1234-1243. Publisher's VersionAbstract
To protect the security of energy supply, China is building national strategic petroleum reserve (SPR). We present a dynamic programming model to determine the optimal stockpiling and drawdown strategies for China's SPR under various scenarios, focusing on minimizing the total cost of reserves. In contrast to previous research, the oil price given in our model is exogenous on a monthly instead of annual basis, with a view to more realistic simulation of optimal strategies each year. Our model results show that in the case where stockpiling affects oil prices, a given SPR size will be achieved earlier than when stockpiling does not affect oil prices. In different emergency conditions, the optimal stockpiling and drawdown strategies of China's SPR are very different. When an emergency occurs, the shock of stockpiling on the oil price per barrel could range $0.49–$6.35, while the impact of drawdown on the oil price per barrel could range −$6.22 to −$0.48.
Xi Lu, Jackson Salovaara, and Michael B. McElroy. 2012. “Implications of the recent reductions in natural gas prices for emissions of CO2 from the US power sector.” Environmental Science & Technology, 46, 5, Pp. 3014–3021. Publisher's VersionAbstract
CO2 emissions from the US power sector decreased by 8.76% in 2009 relative to 2008 contributing to a decrease over this period of 6.59% in overall US emissions of greenhouse gases. An econometric model, tuned to data reported for regional generation of US electricity, is used to diagnose factors responsible for the 2009 decrease. More than half of the reduction is attributed to a shift from generation of power using coal to gas driven by a recent decrease in gas prices in response to the increase in production from shale. An important result of the model is that, when the cost differential for generation using gas rather than coal falls below 2–3 cents/kWh, less efficient coal fired plants are displaced by more efficient natural gas combined cycle (NGCC) generation alternatives. Costs for generation using NGCC decreased by close to 4 cents/kWh in 2009 relative to 2008 ensuring that generation of electricity using gas was competitive with coal in 2009 in contrast to the situation in 2008 when gas prices were much higher. A modest price on carbon could contribute to additional switching from coal to gas with further savings in CO2 emissions.

Final Manuscript in DASH
This paper is from a series investigating and comparing the prospects for low- and non-carbon power generation in China and the U.S.; click here (http://news.harvard.edu/gazette/story/2012/02/model-situation/) to see coverage in the Harvard Gazette.

Jing Cao, Mun S Ho, and Dale W Jorgenson. 2012. “An integrated assessment of the economic costs and environmental benefits of pollution and climate control.” In The Chinese Economy: A New Transition, edited by Masahiko Aoki. London: Palgrave Macmillan. Publisher's Version